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Abstract
We give a simple and provably correct replacement for the contested “domain-extension” in

Step 9 of a recent windowed-QFT lattice algorithm with complex-Gaussian windows [Chen, 2024].
As acknowledged by the author, the reported issue is due to a periodicity/support mismatch when
applying domain extension to only the first coordinate in the presence of offsets. Our drop-in
subroutine replaces domain extension by a pair-shift difference that cancels all unknown offsets
exactly and synthesizes a uniform cyclic subgroup (a zero-offset coset) of order P inside (ZM2)

n.
A subsequent QFT enforces the intended modular linear relation by plain character orthogonality.
The sole structural assumption is a residue-accessibility condition enabling coherent auxiliary
cleanup; no amplitude periodicity is used. The unitary is reversible, uses poly(logM2) gates,
and preserves upstream asymptotics.

Project Page: https://github.com/yifanzhang-pro/quantum-lattice

1 Introduction

Fourier Sampling-based quantum algorithms for lattice problems typically engineer a structured
superposition whose Fourier transform reveals modular linear relations. A recent proposal of a
windowed quantum Fourier transform (QFT) with complex-Gaussian windows by Chen [2024] follows
this paradigm and, after modulus splitting and CRT recombination, arrives at a joint state whose n
coordinate registers (suppressing auxiliary workspace) are of the explicit affine form

|ϕ8.f⟩ =
∑
j∈Z

α(j)
∣∣ 2D2j b∗1

∣∣ 2D2j b∗[2..n] + v∗
[2..n] modM2

〉
, (1.1)

where M2 := D2P with P =
∏κ

η=1 pη the product of distinct odd primes, gcd(D,P ) = 1, α(j) =
exp

(
2πi
M2

(aj2 + bj + c)
)

is a known quadratic envelope from the windowed-QFT stage,1 b∗ =
(b∗1, . . . , b

∗
n) ∈ Zn (with b∗1 = p2 · · · pκ in the concrete pipeline of Chen [2024]), and the offset vector

v∗ ∈ Zn has unknown entries (often v∗1 = 0 by upstream normalization). The algorithmic goal is to
sample a vector u ∈ Zn

M2
satisfying the modular linear relation

⟨b∗,u⟩ ≡ 0 (mod P ), (1.2)
1The sum over j is effectively finite due to the upstream window; we omit a global normalization constant, which

plays no role in our arguments.
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from which the hidden information is recovered by standard linear algebra over the CRT factors.
The published Step 9 of Chen [2024] seeks to implement Eq. (1.2) by a “domain extension”

applied only to the first coordinate, justified by a periodicity-of-amplitude heuristic. However, the
domain-extension lemma invoked there presupposes global P -periodicity of the amplitude, while the
presence of offsets v∗ breaks this premise: extending one coordinate alone changes the support and
misaligns it with the intended ZP -fiber. As acknowledged by the author, the resulting state does not
enforce Eq. (1.2) once offsets are present.

In this work, we give a simple, reversible subroutine that substitutes Step 9 and restores
correctness without appealing to amplitude periodicity. The core idea is a pair-shift difference that
cancels offsets exactly and synthesizes a uniform cyclic coset of order P inside (ZM2)

n; a plain QFT
then enforces Eq. (1.2) by character orthogonality. Formally, we prepare a uniform label T ∈ ZP ,
realize the difference register Z ≡ − 2D2T b∗ (modM2), and (coherently) erase T . This produces an
exactly uniform superposition over a cyclic subgroup of size P contained in the ZP -component of
(ZM2)

n. Applying QFT⊗n
ZM2

to Z yields outcomes exactly supported on Eq. (1.2) and uniform over
that set; the quadratic phase α(j) and the offsets v∗ play no role in the support.

We require only a mild residue-accessibility condition: for each prime pη | P , some coordinate of
b∗ is nonzero modulo pη. Equivalently, the map T 7→ T b∗ (modP ) is injective. This assumption
is used solely to erase T coherently; no amplitude periodicity is assumed anywhere. The unitary
is realized with classical reversible modular arithmetic (no QFT-based adders) in poly(logM2)
gates and preserves the upstream phase envelope α(j). It is drop-in compatible with the CRT and
windowed-QFT bookkeeping of Chen [2024].

Conceptually, the subroutine embeds ZP into (ZM2)
n via T 7→ −2D2T b∗ and averages uniformly

over that orbit. Offsets cancel because we only manipulate basis registers and then take a difference
between a shifted and an unshifted copy; the resulting uniform coset lives entirely in the ZP -component
of (ZM2)

n (since M2 = D2P and 2D2 is a unit modulo P ). By standard Pontryagin duality for finite
abelian groups, the QFT of a uniform coset has support on the annihilator, which here is precisely
the hyperplane Eq. (1.2). Section 3 gives the concrete circuit and a proof of exact correctness.

Our analysis explains why one-coordinate domain extension cannot be justified under offsets:
Lemma 2.17 of Chen [2024] requires global P -periodicity, which is violated post-Step 8 once
v∗ ̸= 0. The proposed replacement avoids any periodicity argument, works entirely at the level of
subgroup cosets, and recovers the intended constraint by an elementary orthogonality calculation.
By synthesizing and Fourier-sampling a uniform subgroup coset rather than extending an index, we
operate at the group-structure level and sidestep support misalignment entirely in the presence of
offsets.

Organization. Section 2 introduces notation and states the residue-accessibility condition. Sec-
tion 3 gives the Step 9† circuit, the cleanup, and a proof of exact correctness. It explains how we
keep phases fixed. Section 4 records gate counts, complexities, and variants. Appendix A contains
explanations about the mechanics behind offset cancellation, the cyclic coset, and the orthogonality
check. Appendix B proves state factorization, Appendix C lists a gate-level skeleton, and Appendix D
defines the scope of determinism.
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2 Preliminaries

Notation. For q ∈ N, Zq = Z/qZ with representatives in (− q
2 ,

q
2 ]. Vectors are bold; inner

product is ⟨·, ·⟩. All modular arithmetic on registers is modulo M2 = D2P unless noted. We write
x[2..n] := (x2, . . . , xn) for coordinate slices. Throughout, for each prime pη | P we let i(η) denote
the lexicographically first index i ∈ {1, . . . , n} with ∆i ̸≡ 0 (mod pη) (equivalently, b∗i ̸≡ 0 (mod pη)
since 2D2 is a unit). This choice is fixed once and for all and is implementable by a reversible priority
encoder (see Step 9†.4).

Quantum tools. We use standard primitives: QFTZq
in poly(log q) gates and reversible modular

addition/multiplication. We distinguish two routines:
(i) Coordinate evaluator Ucoords, the reversible arithmetic block that writes the coordinate

registers appearing in Eq. (1.1) on basis input j:

Ucoords : |j⟩ |0⟩ 7−→ |j⟩ |X(j)⟩ .

We call Ucoords only on basis inputs (here j = 0, 1) to harvest data.
(ii) Arithmetic evaluator Uprep, a separate phase-free reversible circuit that never invokes Ucoords

again and that, with read-only access to harvested basis data (V,∆), computes

|j⟩ |0⟩ 7→ |j⟩ |V + j ·∆ modM2 ⟩ .

Concretely, we first call Ucoords on j = 0, 1 to obtain V := X(0) andW := X(1), set ∆ :=W−V ( mod
M2), and thereafter realize Uprep by double-and-add plus modular additions (Toffoli/Peres-style
classical reversible circuits; no QFT-based adders). Because Uprep is a permutation of computational
basis states, applying it on superpositions introduces no data-dependent phases. Reversibility/garbage
is handled by standard uncomputation. In the optional constant-adder path of Step 9†.4 one may
use (2D2b∗i(η))

−1 mod pη if a classical description of b∗ mod P is available; the default path uses
only ∆ ≡ 2D2 b∗.

Lemma 2.1 (Existence of a basis-callable coordinate evaluator). Any unitary implementation that
produces Eq. (1.1) necessarily contains a reversible arithmetic block that maps |j⟩ |0⟩ 7→ |j⟩ |X(j)⟩
(possibly with workspace later uncomputed). We denote such a block by Ucoords and call it only on
basis inputs.

Assumption 2.2 (Basis-callable coordinate evaluator; run-local determinism). Within a single
circuit execution, the coordinate evaluator Ucoords uses fixed classical constants so that the basis
outputs X(0) and X(1) are reproducible. We harvest (V,∆) inside the same run prior to any
superposition-time step: V := X(0) and ∆ := X(1)−X(0). The arithmetic evaluator Uprep used
during superpositions performs only classical reversible (Toffoli/Peres) arithmetic and never calls
Ucoords on a superposed input. Harvested registers (V,∆) are treated as read-only basis data.

Security/indistinguishability note. If an external oracle were to return X(j+T ) from X(j) for
arbitrary T with the same offset, then—as in LWE with reused noise—subtracting two outputs
would reveal the offset-free difference and compromise indistinguishability. Our construction never
assumes such an oracle. All calls to Ucoords are intra-run basis calls that reuse the very arithmetic
that prepared Eq. (1.1); across runs, upstream randomness need not preserve the same offset.
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Implementation note. (i) Harvest (V,∆) within the same run before any superposition-time
step, and keep them as read-only basis data. The coordinate evaluator Ucoords is never applied to a
superposed input. (ii) The evaluator Uprep is implemented with classical reversible (Toffoli/Peres)
adders/multipliers only; we do not use QFT-based adders, ensuring no data-dependent phase is
introduced on superpositions.

Lemma 2.3 (Phase discipline). If all superposition-time arithmetic in Steps 9†.1–9†.4 is realized
by classical reversible circuits (no QFT-based adders) and Ucoords is never applied on a superposed
input, then no additional data-dependent phase is imprinted beyond the fixed quadratic envelope
α(j) produced upstream.

Proof. Classical reversible adders/multipliers implement permutations of the computational basis;
thus they preserve amplitudes and phases. Avoiding Ucoords on superpositions prevents reintroduction
of state-preparation phases.

Remark. QFT-based adders would, in general, introduce data-dependent phases through controlled
rotations; these are precisely the kind of envelope phases one must avoid in the windowed-QFT
regime that produced α(j) upstream. In our construction, Ucoords is never applied to a superposed
input.

Within a single run, one could measure the harvested basis registers V = X(0) and ∆ =
X(1)−X(0) and hence recover v∗ and 2D2b∗ classically. Our default path simply does not require
such measurement; we retain (V,∆) as basis data to maintain phase discipline. If an implementation
is happy to expose b∗ classically, the constant-adder variant (Remark 3.4) applies verbatim and
further simplifies cleanup. No indistinguishability claim is made or needed here.

Arithmetic evaluator and finite difference ∆. Let Uprep be the reversible arithmetic evaluator
of X(·) as above, and define

∆ := X(1)−X(0) (mod M2),

harvested once via basis calls j = 0, 1. Because X(j) depends only on j mod P , this same ∆ equals
X(J+1) −X(J) for any classical J , but we do not recompute it; ∆ is treated as read-only basis
data. In all cases, ∆ ≡ 2D2 b∗ (modM2). We will use ∆ to compute T from Z without any classical
knowledge of b∗.

Where X(j) comes from in Chen [2024]. In Chen’s nine-step pipeline, after modulus splitting
P and CRT recombination, the state denoted |φ7⟩ (and the discussion immediately before Step 8
there) contains a coordinate block of the explicit affine form(

2D2j b∗1
∣∣ 2D2j b∗[2..n] + v∗

[2..n]

)
(mod M2),

up to an orthogonal M2
2 –coset index k and a global quadratic phase in j (the “Karst-wave” envelope).

If we retain just this coordinate block (suppressing k), rename the surviving (effectively finite) loop
variable as j, and ignore global phases, we obtain exactly Eq. (1.1). In the notation used throughout
our paper,

X(j) := V + j∆ ≡ 2D2j b∗ + v∗ (mod M2),

with V = v∗ and ∆ = 2D2b∗ harvested once via basis calls j = 0, 1 to the preparation/evaluator
block Ucoords (Prop. 2.4). The optional label J ≡ j (mod P ) that we carry in Section 3 is precisely
the CRT-reduced index present after Chen’s Step 8. No periodicity-of-amplitude assumption is used
here, only the affine computational-basis content of the coordinate registers.
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Explicit construction of Uprep without classical b∗,v∗. We now give a stand-alone construction
of the reversible arithmetic evaluator Uprep : |j⟩ |0⟩ 7→ |j⟩ |X(j)⟩ that does not require any classical
knowledge of b∗ or v∗.

Proposition 2.4 (Harvest-on-basis & arithmetic re-evaluation). Let Ucoords be the coordinate
evaluator from Lemma 2.1. Invoke it once each on the basis inputs j = 0 and j = 1 (with all ancillas
restored to |0⟩) to obtain two program registers in the computational basis:

V := X(0) = v∗ (mod M2), ∆ := X(1)−X(0) ≡ 2D2 b∗ (mod M2).

This harvest occurs within the same run, before any superposition-time step, and uses no mid-circuit
measurement. Now define a separate reversible arithmetic evaluator Uprep that acts on |j⟩ |0⟩ (with
read-only access to V,∆) by computing

|j⟩ |0⟩ 7→ |j⟩ |V + j ·∆ modM2 ⟩ .

This evaluator performs no phase kickback (Toffoli/Peres-style arithmetic; no QFT adders) and
never invokes Ucoords again; hence any quadratic phases created during the windowed–QFT stage
remain unaffected. The multiplication j ·∆ is implemented reversibly by a standard double-and-add
routine that treats ∆ as data (not as a hard-coded constant) without mutating it: if j =

∑
ℓ jℓ2

ℓ

in binary, perform for each bit ℓ the controlled update “if jℓ=1 then add Rℓ”, where R0 := ∆ and
Rℓ := 2Rℓ−1 (modM2) is maintained in a scratch register; ∆ itself remains unchanged and the Rℓ

ladder is uncomputed at the end. Finally add V (mod M2).

Lemma 2.5 (Efficiency and independence from classical secrets). Construction 2.4 realizes a
unitary Uprep with gate complexity O(n logP · poly(logM2)). It uses only reversible modular
additions/doublings and treats (V,∆) as basis registers obtained from Ucoords; no classical description
of b∗ or v∗ is required. The reversible double-and-add uses one scratch register R to hold Rℓ and
uncomputes it at the end; ∆ is never modified. Computing per-prime modular inverses during
cleanup via a reversible extended Euclidean algorithm costs O((log pη)

2) gates per pη (or Õ(log pη)
with half-GCD). Re-evaluating X(·) at J+T therefore consists of invoking the arithmetic evaluator
on the input label J+T , without imprinting any additional phases.

Proof. The schoolbook double-and-add uses O(logP ) additions per coordinate, each in poly(logM2)
gates; n coordinates contribute the stated factor. All operations are on computational-basis registers
(V,∆) and do not assume knowledge of their numeric values. As Ucoords is the known reversible
subroutine already used to produce Eq. (1.1), preparing (V,∆) once is efficient; after preparation,
Uprep can be called repeatedly at different inputs (e.g., J+T in Step 9†.2). Note. Multiplication by
the data vector ∆ via double-and-add performs O(logP ) controlled additions per coordinate, never
mutates ∆, and uncomputes the scratch ladder Rℓ exactly.

Remark 2.6. If a classical description of b∗ mod P happens to be available, one may replace the
data-multiplication by a constant adder using 2D2T b∗ as in Remark 3.4; this is optional and not
used in our default path.

Lemma 2.7 (Affine register form). For all j in the implicit finite window (from the windowed-QFT
stage), the coordinate registers immediately before Step 9 have the exact affine form

X(j) ≡ 2D2j b∗ + v∗ (mod M2),

and the window affects only the amplitudes α(j), not the computational-basis contents. In particular,
X(j+1)−X(j) ≡ ∆ (mod M2) for all j, hence X(j) ≡ V + j∆ (mod M2).
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Default J-free realization. If one prefers to avoid carrying J , the construction can be simplified
as follows: after harvesting ∆ as basis data, skip the re-evaluation of X(j+T ) and directly allocate
Z and set

Z← −T ·∆ (mod M2)

by a double-and-add with read-only access to ∆. The subsequent cleanup (computing T ′ from Z
and uncomputing it) proceeds unchanged. This variant removes the need for Y and J entirely.

Injectivity condition. We will use the following natural assumption, which enables coherent coset
synthesis by allowing us to uncompute the shift parameter T from the difference register. Without
it, T cannot be erased from the rest of the state, and Fourier sampling on Z alone becomes uniform
over Zn

M2
(i.e., it does not enforce Eq. (1.2) with constant success probability).

Definition 2.8 (Residue accessibility). For each prime pη | P , there exists a coordinate i(η) ∈
{1, . . . , n} such that the entry b∗i(η) is not a multiple of pη, i.e., b∗i(η) ̸≡ 0 (mod pη).

This condition holds with overwhelming probability for the lattice instances considered in [Chen,
2024]; any given instance can be checked efficiently, and coordinates can be permuted if necessary.
Importantly, this assumption is needed only for the cleanup that erases T coherently. If the cleanup is
skipped, then regardless of whether Definition 2.8 holds, applying QFT to Z alone yields the uniform
distribution on Zn

M2
(the T -branches remain orthogonal and do not interfere). When Definition 2.8

holds, T is a function of Z mod P , enabling coherent erasure and the interference that enforces
Eq. (1.2). It implies that the map T 7→ T b∗ (mod P ) from ZP to (ZP )

n is injective. To see this,
if T b∗ ≡ 0 (mod P ), then for each η, the condition b∗i(η) ̸≡ 0 (mod pη) (equivalently, ∆i(η) ̸≡ 0

(mod pη) since ∆ ≡ 2D2b∗ and 2D2 is a unit mod pη) forces T ≡ 0 (mod pη). By the Chinese
Remainder Theorem, this implies T ≡ 0 (mod P ). Conversely, if Definition 2.8 fails for some pη,
then b∗i ≡ 0 (mod pη) for all i, so every T multiple of pη lies in the kernel of T 7→ T b∗ mod P ;
hence injectivity fails. Thus, Definition 2.8 is equivalent to the injectivity of this map and to the
recoverability of T from Z mod P .

Remark 2.9 (Random-instance bound). Because b∗1 = p2 · · · pκ, we have b∗1 ̸≡ 0 (mod p1) and
b∗1 ≡ 0 (mod pη) for all η ≥ 2. If, for each prime pη, the remaining coordinates (b∗2, . . . , b

∗
n) mod pη

are close to uniform over (Zpη)
n−1 (as in typical reductions), then for η = 1 the accessibility condition

holds deterministically, while for each η ≥ 2 we have

Pr[ b∗i ≡ 0 for all i mod pη ] = Pr[ b∗2 ≡ · · · ≡ b∗n ≡ 0 mod pη ] = p−(n−1)
η .

A union bound therefore yields

Pr[residue accessibility fails for some pη] ≤
κ∑

η=2

p−(n−1)
η ,

which is negligible once n ≥ 2 and the pη are moderately large (for n = 2, the sum still decays with
the prime sizes).

Proposition 2.10 (Cleanup necessity and consequence). Let |Φ3⟩ be the joint state immediately
after forming Z (Eq. (3.1)) but before auxiliary cleanup. If T remains entangled with Z, then
Fourier sampling on Z alone is uniform over (ZM2)

n, irrespective of v∗ and the phases α(j). Under
Definition 2.8, T is a function of Z mod P and can be erased coherently; the resulting pure state
factors as in Eq. (3.2), enabling interference that enforces Eq. (1.2).
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Proof. Tracing out (X,Y, T ) before cleanup leaves the classical mixture
ρZ = 1

P

∑
t∈ZP

|−2D2tb∗⟩ ⟨−2D2tb∗|. Since QFT⊗n
ZM2
|z⟩ has a uniform measurement distribution for

every basis state |z⟩, any convex mixture of basis states yields a uniform measurement on (ZM2)
n.

Thus, before cleanup, Fourier sampling enforces no constraint. When Definition 2.8 holds, t is a
(CRT-)function of Z mod P ; we reversibly compute t from Z, zero the original T , restore Y to
X(j) using the evaluator Uprep (the b∗-free path), uncopy, and uncompute the auxiliary arithmetic.
The post-cleanup state factors as in Eq. (3.2), so subsequent Fourier sampling interferes across the
T -branches and enforces Eq. (1.2). Full details are in Appendix B.

3 The new Step 9†: pair-shift difference and exact coset synthesis

3.1 Idea in one line

Make a second copy of the coordinate registers, coherently shift it by a uniform T ∈ ZP along the b∗

direction, and subtract. The subtraction cancels the unknown offsets v∗ and leaves a clean difference
register −2D2T b∗ (mod M2). Because T is uniform, this is an exactly uniform superposition over a
cyclic subgroup of order P (the ZP -fiber in the CRT decomposition ZM2

∼= ZD2 ×ZP ) indexed by T .
A QFT on this coset yields Eq. (1.2) exactly, by plain character orthogonality. The pseudo code is
shown in Algorithm 1.

3.2 Method

We present two realizations of Step 9† (we adopt the J-free route as the canonical default; the
re-evaluation route is optional). Neither realization assumes an oracle that, from X(j) alone, produces
X(j+T ):

Default J-free route: Steps 9†.2′ and 9†.4 only; no Y register is ever allocated and Step
9†.1 is not used. This route forms Z directly from ∆; no evaluation of X(j+T ) occurs and no
“As+e 7→ As′+e” oracle is assumed.

Re-evaluation route: Steps 9†.1–9†.4; this route allocates Y and uses a label J ≡ j (mod P )
(carried from preparation).

We begin with the input state |ϕ8.f⟩ from Eq. (1.1). We prepare a register for T ∈ ZP in the
uniform superposition 1√

P

∑
t∈ZP

|t⟩, e.g., preferably by independent QFTZpη
with CRT wiring (an

exact realization); a monolithic QFTZP
is also possible. (Only in the re-evaluation route do we also

append Y ∈ (ZM2)
n; the default J-free route does not allocate Y.)

Step 9†.1 (copy). Use CNOT or modular addition gates to coherently copy the coordinate registers
into Y. This basis-state copying does not violate the no-cloning theorem.∑

j

α(j) |X(j)⟩ |0⟩ 7−→
∑
j

α(j) |X(j)⟩ |X(j)⟩ ,

where for brevity we write X(j) :=
(
2D2j b∗1

∣∣ 2D2j b∗[2..n] + v∗
[2..n]

)
modulo M2.

Remark 3.1 (Copying basis states does not violate no-cloning). Let Uadd act coordinatewise by
Uadd |x⟩ |y⟩ = |x⟩ |x+ y⟩ (mod M2). This is a permutation of the computational basis and hence
unitary. In particular, Uadd |x⟩ |0⟩ = |x⟩ |x⟩, so computational-basis states are copied exactly. For a
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superposition |ψ⟩ =
∑

j α(j) |X(j)⟩, linearity gives

Uadd

(∑
j

α(j) |X(j)⟩ |0⟩
)
=

∑
j

α(j) |X(j)⟩ |X(j)⟩ ,

which is entangled and not |ψ⟩ ⊗ |ψ⟩ unless |ψ⟩ is a single basis vector. Thus Step 9†.1 does not
implement a universal cloner; it coherently copies classical (commuting) information, in agreement
with the no-cloning [Wootters and Zurek, 1982, Dieks, 1982] and no-broadcasting theorems [Barnum
et al., 1996]; see also [Nielsen and Chuang, 2010].

Step 9†.2. The re-evaluation (copy-shift-difference) variant is presented in Subsection 3.3. The
default path is the J-free shift in Step 9†.2′ below.
Step 9†.2’ (J-free shift). Alternative to (and simpler than) Step 9†.2. Skip Y and J altogether
and directly set

Z← −T ·∆ (modM2),

using the double-and-add with ∆ as read-only data. Equivalently,

Z = − 2D2T b∗ (mod M2). (3.1)

Proceed to Step 9†.4 for cleanup. This variant removes the need for Y and J entirely.

Step 9†.4 (mandatory auxiliary cleanup). The residue accessibility assumption (Definition 2.8)
ensures that T can be computed as a function of Z mod P (uniquely by CRT). Default (b∗-free)
path: recall the harvested finite difference ∆ := X(1)−X(0) ≡ 2D2 b∗ (modM2), obtained once
from literal basis inputs j = 0, 1. Do not invoke Ucoords again. For each prime pη | P , reduce
(∆,Z) modulo pη and fix once and for all the lexicographically smallest index i(η) ∈ {1, . . . , n}
with ∆i(η) ̸≡ 0 (mod pη) (equivalently, b∗i(η) ̸≡ 0 (mod pη) since 2D2 is a unit). We implement this
choice by a reversible priority encoder over the predicates [∆i ̸≡ 0 (modpη)], write i(η) into an
ancilla, and uncompute all scan flags afterward; thus the selection is deterministic, reversible, and
measurement-free. Then compute into a fresh auxiliary register T ′, the residues

T ′ ≡ −∆−1
i(η) Zi(η) (mod pη),

using a modular inversion subroutine controlled on the predicate [∆i(η) ̸≡ 0]; this avoids undefined
inversions. The inverses ∆−1

i(η) mod pη are computed on the fly (e.g., reversible extended Euclidean
algorithm) and require no classical knowledge of b∗. Finally recombine the residues via a reversible
CRT—either a naive Garner mixed-radix scheme (quadratic in κ) or a remainder/product-tree CRT
(near-linear O(κ log κ))—with precomputed constants depending only on P . Keep the intermediate
digits so they can be uncomputed in reverse; this recovers T ′ ∈ ZP . Here is the detailed cleanup
steps in the J-free (default) branch:

(i) Compute T ′ from (Z,∆) via per-prime inversions and reversible CRT.

(ii) Set T ← T − T ′ so that T = 0.

(iii) Erase T ′ by applying the inverse of its computation from Z.

8



These steps leave Z unchanged and require no classical access to b∗. The cleanup for the re-evaluation
variant is given below in Subsection 3.3.

Reversibility note: CRT recombination can be implemented (i) by a reversible Garner mixed-radix
scheme in O(κ2) modular operations, or (ii) by a reversible remainder/product-tree CRT in O(κ log κ)
modular operations; both use constants depending only on (pη) and are reversible when the ancilla
trail is retained, so the subsequent uncomputation is exact. After these actions, the global state
factorizes with a coherent superposition on Z.2

Lemma 3.2 (Recovering T from Z). Under Definition 2.8 and Eq. (3.1), let ∆ := X(J+1)−X(J) ≡
2D2 b∗ (modM2). For each pη, after reducing modulo pη, fix the lexicographically smallest i(η) with
∆i(η) ̸≡ 0 (mod pη) and let cη := ∆−1

i(η) mod pη. Then T ≡ −cη Zi(η) (mod pη) for all η, and the
unique T ∈ ZP is obtained by CRT recombination.

Proof. Immediate from Zi(η) ≡ −2D2T b∗i(η) (mod pη) and ∆i(η) ≡ 2D2b∗i(η) (mod pη), which give
Zi(η) ≡ −T ∆i(η) (mod pη) and hence T ≡ −∆−1

i(η)Zi(η) (mod pη).

After Step 9†.4 we have the factorized state(∑
j

α(j) |junk(j)⟩
)
⊗ 1√

P

∑
T∈ZP

∣∣∣ − 2D2T b∗ modM2

〉
Z
, (3.2)

where “junk(j)” denotes registers independent of Z that we will never touch again.

Why one-coordinate domain extension fails. Consider the map j 7→ X(j) in Eq. (1.1) with
offsets. Any one-coordinate domain-extension rule that prolongs only the first coordinate while
holding the others modulo P is valid only when the entire state amplitude is P -periodic in the
extended index. Offsets break this premise: the last n−1 coordinates shift by 2D2j b∗[2..n] + v∗

[2..n],
whose P -periodicity depends on the unknown v∗ and cannot be assumed. As in the paper’s own
DCP caution, replacing j by a longer register while keeping (j mod P ) in the other coordinates
changes the instance (cf. |j⟩ |(j mod 2)x− y⟩ ̸= |j⟩ |jx− y⟩).

Fourier sampling. Apply QFT⊗n
ZM2

to the entire Z-register block and measure u ∈ Zn
M2

. The
outcome distribution is analyzed next.

Algorithm 1 Step 9† — Default J-free route (no copy step)
Require: Registers X ∈ (ZM2)

n as in Eq. (1.1); harvested ∆ = X(1)−X(0).
1: Prepare T ∈ ZP in 1√

P

∑
t∈ZP

|t⟩.
2: Set Z← −T ·∆ (mod M2) (double-and-add; read-only ∆)
3: Auxiliary cleanup: compute T ′ ← f(Z,∆) by per-prime inversions and reversible CRT; set
T ← T − T ′ (so T = 0); uncompute T ′ from Z by inverting its construction.

4: Apply QFT⊗n
ZM2

to Z; measure u ∈ Zn
M2

.
5: Output u; by Theorem 3.9 (given Definition 2.8), it satisfies ⟨b∗,u⟩ ≡ 0 (mod P ).

The re-evaluation route (which uses Step 9†.1) is given next and in Subsection 3.3.

2This cleanup is necessary for correctness; see Prop. 2.10.
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Algorithm 2 Step 9† — Re-evaluation route (uses Step 9†.1 copy)
Require: Registers X ∈ (ZM2)

n (Eq. (1.1)); label J ≡ j (mod P ); harvested (V,∆) for Uprep.
1: Prepare T ∈ ZP in 1√

P

∑
t∈ZP

|t⟩.
2: (9†.1 Copy) Copy X to Y via modular adds.
3: (9†.2 Shift) Evaluate Uprep at J + T into Y to get X(j+T ).
4: (9†.3 Difference) Set Z← X−Y (mod M2).
5: (9†.4 Cleanup) Compute T ′ ← f(Z,∆); update Y ← Y +

(
X(J+T−T ′) − X(J+T )

)
; set

T ← T − T ′; uncopy Y; uncompute T ′ from Z.
6: Apply QFT⊗n

ZM2
to Z; measure u.

7: return u.

3.3 Re-evaluation variant for Step 9†

Optional index label (retained from the windowed–QFT stage). For one realization of
our pair–shift difference and cleanup without any classical knowledge of the full vector b∗, it can
be convenient to retain a small label register J ∈ ZP with J ≡ j mod P from the state-preparation
routine that produces Eq. (1.1). This is operationally free: we simply refrain from uncomputing the
j-label modulo P while preparing the coordinate registers. Crucially, X(j) = (2D2j b∗+v∗) modM2

depends only on j mod P because 2D2P ≡ 0 (mod M2); hence a label in ZP suffices to re-evaluate
the preparation. In this re-evaluation route one uses J to re-evaluate the same reversible preparation
map at j + T , and in cleanup (below) we use J to realize a b∗-free erasure of T .

Step 9†.1 (copy). Use CNOT or modular addition gates to coherently copy the coordinate registers
into Y: ∑

j

α(j) |X(j)⟩ |0⟩ 7→
∑
j

α(j) |X(j)⟩ |X(j)⟩ .

Step 9†.2 (pair-evaluation shift). Using the arithmetic evaluator Uprep of Prop. 2.4, compute
into Y the value corresponding to j + T without reproducing any phases:

(X(j),Y = X(j), J, T ) 7−→ (X(j),Y = X(j + T ), J, T ),

where J ≡ j (mod P ) and j+T is treated as an integer (all arithmetic inside the preparation circuit
is modulo M2). Equivalently,

Y =
(
2D2(j + T )b∗1

∣∣ 2D2(j + T )b∗[2..n] + v∗
[2..n]

)
.

Remark 3.3 (No classical knowledge of b∗ is required). This step uses the arithmetic evaluator
that computes V + j∆ with read-only data (V,∆) and therefore never forms 2D2T b∗ as an explicit
classical constant and never modifies the pre-existing quadratic phase profile α(·).

Remark 3.4 (Constant-adder realization when b∗ is known). If a classical description of b∗

modulo P is available, one may instead implement this step by adding the constant vector 2D2T b∗

coordinatewise (mod M2). Only b∗ mod P is needed, since 2D2 annihilates the ZD2 component.
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Step 9†.3 (difference; offset cancellation). Compute the coordinatewise difference Z := X−Y
(mod M2) into a fresh n-register block:

Z← X−Y (mod M2),

so that Z ≡ − 2D2T b∗ (mod M2) and the unknown offsets v∗ cancel exactly.

Step 9†.4 (cleanup; re-evaluation variant). With residue accessibility (Definition 2.8), compute
T ′ from (Z,∆) by per-prime inversions and CRT, then:

(i) Without modifying Z, coherently update Y from X(j + T ) to X(j + T − T ′) by re-evaluating
Uprep on input J + T − T ′ and subtracting the previously computed value X(j + T ):

Y ← Y +
(
X(J + T − T ′)−X(J + T )

)
(mod M2).

(ii) Set T ← T − T ′, so T = 0 and hence Y = X(j).

(iii) Uncopy by applying the inverse of the copy to map (X,Y) 7→ (X,0).

(iv) Erase T ′ by applying the inverse of its computation from Z.

Remark 3.5 (Implementation note (index label availability)). If this re-evaluation route is used,
the implementation must expose (and not uncompute) a computational-basis register J ≡ j (modP )
during the superposition-time steps.

Remark 3.6 (Alternative when b∗ is known modulo P ). One may undo the shift on Y using the
constant adder Y ← Y − 2D2T ′ b∗. Here, invertibility of 2D2 modulo each pη follows from oddness
and gcd(D,P ) = 1.

Variant: pair-evaluation without classical b∗. Let Uprep denote the arithmetic evaluator that
sends |j⟩ |0⟩ 7→ |j⟩ |X(j)⟩ using (V,∆) (suppressing ancillary work registers). Retain a label J ≡ j
(mod P ). Then implement Step 9†.2 as follows:

1. Compute J + T in place (mod P ).

2. Run Uprep on input J + T into Y to obtain X(j + T ).

3. (Optionally) restore J by subtracting T .

The subsequent difference Z ← X − Y yields Z ≡ −2D2T b∗ (mod M2), with the offsets cancelling
identically. This realization needs no classical access to b∗ (nor to v∗).

Implementation note. In practice, set ∆ = X(1) −X(0) (harvested once) and reduce (∆,Z)
modulo each pη in parallel. For each prime, choose the lexicographically smallest coordinate i(η)
with ∆i ̸≡ 0 (mod pη) (deterministic and reversible), compute ∆−1

i(η) (mod pη) via a reversible
extended Euclidean algorithm, and form Tη ≡ −∆−1

i(η)Zi(η) (mod pη). Recombine the residues by
a reversible CRT (e.g., Garner mixed-radix). As D and all pη are odd with gcd(D,P ) = 1, the
factors 2 and D2 are units modulo every pη, and residue accessibility guarantees the existence
of at least one invertible coordinate per prime. Keep T ′ as a dedicated scratch register that is
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not modified by any other step until it is uncomputed by inverting its computation from Z. For
preparing 1√

P

∑
t∈ZP

|t⟩, the per-prime preparation
⊗

η
1√
pη

∑
tη∈Zpη

|tη⟩ followed by CRT wiring
is exact and avoids approximation issues associated with a monolithic QFTZP

; this mirrors the
modulus-splitting/CRT bookkeeping already used in Chen [2024]. The unit factor −2 in the generator
is immaterial (any fixed unit modulo P yields the same annihilator); we keep it to match Eq. (1.1).

3.4 Exact correctness

Lemma 3.7 (Cyclic embedding). Under Definition 2.8, the map ϕ : ZP → (ZM2)
n given by

ϕ(T ) = −2D2T b∗ (mod M2) is an injective group homomorphism. Hence, its image is a cyclic
subgroup of order P , and the state in Eq. (3.2) is uniform over a subgroup-coset of size P .

Proof. Homomorphism is immediate. For injectivity, reduce modulo P : if ϕ(T ) ≡ 0, then 2D2T b∗ ≡
0 (mod P ). Since 2D2 is a unit modulo P and by Definition 2.8 some coordinate of b∗ is a unit
modulo each pη, we must have T ≡ 0 (mod pη) for all η. The Chinese Remainder Theorem gives
T ≡ 0 (mod P ). Moreover, under the CRT decomposition ZM2

∼= ZD2 × ZP , the image of ϕ lies
entirely in the ZP -component (the ZD2 projection is 0), and residue accessibility guarantees that,
for each pη, some coordinate has order pη. Hence the subgroup has order exactly

∏
η pη = P .

Lemma 3.8 (Exact orthogonality from a CRT-coset). Consider the uniform superposition over the
CRT-coset generated by b∗:

|Ψ⟩ = 1√
P

∑
T∈ZP

|−2D2T b∗ modM2⟩ .

After QFT⊗n
ZM2

, the amplitude of u ∈ Zn
M2

is

A(u) =
1√
Mn

2

· 1√
P

P−1∑
T=0

exp
(
2πi
M2

〈
− 2D2T b∗, u

〉)
=

1√
Mn

2

· 1√
P

P−1∑
T=0

(
exp2πi

P · (−2) ⟨b
∗,u⟩

)T
.

Only the ZP -component of u influences the sum over T (the ZD2 projection cancels since M2 = D2P ).
Because P is odd, 2 is invertible modulo P . Hence A(u) = 0 unless ⟨b∗,u⟩ ≡ 0 (mod P ), in which
case |A(u)| =

√
P/M

n/2
2 (up to a global phase). Consequently, the measurement outcomes are

exactly supported on Eq. (1.2) and are uniform over that set; indeed,

#{u ∈ (ZM2)
n : ⟨b∗,u⟩ ≡ 0 (mod P )} =

Mn
2

P
.

Since each feasible u occurs with probability P/Mn
2 and there areMn

2 /P of them, the total probability
sums to 1.

Proof. Let r := exp
(
2πi
M2
· (−2D2) ⟨b∗,u⟩

)
= exp

(
− 2πi

P · 2 ⟨b
∗,u⟩

)
. Because P is odd, 2 is a unit

modulo P , and only the ZP -component of the phase contributes to the sum over T (the ZD2-
component cancels since M2 = D2P ). Note also that rP = exp

(
− 2πi

M2
2D2P ⟨b∗,u⟩

)
= 1 for all u,

so the geometric sum over T ∈ ZP always collapses to either 0 or P . Since M2 = D2P , we have
−2D2

M2
≡ − 2

P (mod 1), i.e., only the P -component of the phase matters in the sum over T ; this is

exactly why the base of the geometric progression is e
2πi
P

(−2)⟨b∗,u⟩. Because P is odd, 2 is invertible
mod P . Thus r = 1 iff ⟨b∗,u⟩ ≡ 0 (mod P ). The sum

∑P−1
T=0 r

T is P if r = 1 and 0 otherwise;
multiplying by the prefactor M−n/2

2 P−1/2 gives the stated amplitude magnitude.
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At each prime pη, Definition 2.8 guarantees that the linear form u 7→ ⟨b∗,u⟩ has rank 1 over Zpη ,
so the solution set on (Zpη)

n has size pn−1
η . By CRT this gives P n−1 solutions on the ZP -part, while

the ZD2-parts are unconstrained and contribute (D2)n, yielding a total of (D2)nP n−1 =Mn
2 /P .

Group-theoretic perspective. For a finite abelian group G and a subgroup H ≤ G, the QFT on
the uniform superposition over any coset of H produces uniform support on the annihilator H⊥ ⊆ Ĝ.
Taking G = (ZM2)

n, H = ⟨−2D2b∗⟩, and identifying Ĝ ∼= G via the standard pairing, we recover
Lemma 3.8 with H⊥ = {u : ⟨b∗,u⟩ ≡ 0 (mod P )}. The overall sign is immaterial since −1 is a unit
modulo P .

Theorem 3.9 (Step 9† is correct). Assume Assumption 2.2 and Definition 2.8. Starting from
Eq. (1.1), after executing either (i) the default J-free route (Steps 9†.2′ and 9†.4), or (ii) the re-
evaluation route (Steps 9†.1–9†.4), the state factors as in Eq. (3.2). In all cases, Ucoords is never
applied on superpositions. Applying QFT⊗n

ZM2
to the Z-register and measuring yields u ∈ Zn

M2

uniformly distributed over the solutions of Eq. (1.2). The offsets v∗ and the quadratic phases α(j)
do not affect the support or uniformity of the measured u.

Proof. Eq. (3.1) shows Z depends only on T , not on j or v∗. Under Definition 2.8, Step 9†.4 erases
T and yields the factorization Eq. (3.2); the part carrying α(j) is in registers disjoint from Z. By
Lemma 3.8, Fourier sampling of Z yields Eq. (1.2) uniformly. Neither v∗ nor α(j) enters that
calculation.

Remark 3.10 (Approximate QFTs). In practice, QFT⊗n
ZM2

will be implemented approximately.

Let a single-register QFT be U and an implementation be Ũ with ∥U − Ũ∥op ≤ ε1. A telescoping
argument gives ∥∥U⊗n − Ũ⊗n

∥∥
op
≤ n ε1.

Consequently, for any input state, the output state’s ℓ2 error is at most nε1, and for any measurement,
the induced total-variation distance between the ideal and realized outcome distributions is at most
nε1. If one prefers a single parameter, write εn := ∥U⊗n − Ũ⊗n∥op ≤ nε1, and the leakage mass is
≤ εn. The support (solutions to Eq. (1.2)) remains the ideal annihilator; approximation affects only
leakage probability, not the constraint itself.

Remarks. (i) No amplitude periodicity is used anywhere. (ii) The offsets v∗ are canceled exactly
by construction; no knowledge of their residues is required. (iii) The residue accessibility condition
(Definition 2.8) is operationally necessary. It enables the erasure of T from the rest of the state, which
ensures that a coherent uniform coset forms on the Z register. Without it, the Fourier sampling
step would fail, as discussed in Section 4. (iv) Edge case n = 1: with b∗1 = p2 · · · pκ, the condition
in Definition 2.8 cannot hold (it vanishes modulo every pη for η ≥ 2), consistent with upstream
requirements that n ≥ 2. (v) The optional J-free realization (Step 9†.2′) produces the same Z and
avoids carrying index labels or re-evaluation ancillas. (vi) The factor 2 in the generator −2D2 T b∗

is inessential: any fixed unit modulo P yields the same annihilator condition. We keep the factor 2
to align with the upstream normalization in Eq. (1.1).

13



Connection back to Chen [2024]. Under the CRT viewpoint, Step 9† replaces the domain-
extension-on-one-coordinate maneuver with a coset synthesis that is agnostic to offsets. Conceptually,
we embed ZP into (ZM2)

n via T 7→ −2D2Tb∗, average uniformly over the orbit, and then read off
the annihilator by QFT. This directly yields the intended linear relation modulo P without invoking
amplitude periodicity across heterogeneous coordinates.

4 Complexity and variants

Complexity. Copying registers and reversible modular adders and multipliers over ZM2 use
O(poly(logM2)) gates. The shift Z← Z−2D2T b∗ costs O

(
n poly(logM2)

)
. Computing Z = X−Y

is linear in n. Uncomputing T needs κ modular reductions and inverses in Zpη and one CRT
recombination. A reversible extended Euclid for one inverse costs O

(
(log pη)

2
)

gates, or Õ(log pη)
with half-GCD. CRT recombination works with either a Garner mixed-radix scheme in O(κ2) modular
steps, or a remainder and product tree in O(κ log κ) steps. Word sizes stay in poly(logP ), and we keep
all intermediate digits for clean uncomputation. The transform QFT⊗n

ZM2
costs O

(
n poly(logM2)

)
.

The subroutine matches the time and success bounds of Chen [2024]. No amplitude amplification
is needed. The support on the target coset is exact and uniform.

The method does not need a periodic amplitude function or any phase flattening. All dependence
on j and on v∗ stays in registers that are disjoint from Z. These terms do not affect the Fourier
sample.

If residue accessibility fails. If Definition 2.8 fails for some prime pη, the map T 7→ T b∗

(mod P ) has a nontrivial kernel. Then T is not a function of Z mod P . Coherent erasure of T is not
possible. Fourier sampling on Z alone becomes uniform over Zn

M2
and does not force Eq. (1.2). Two

paths remain:

1. Enforce the condition modulo P ′ =
∏

η∈I pη, where accessibility holds. Handle the missing
primes by adding one or more auxiliary directions or by a short unimodular re-basis so that
each missing prime is accessible in at least one coordinate. Then rerun the coset step for those
primes. The measured u then obeys ⟨b∗,u⟩ ≡ 0 (mod P ′) exactly and is free modulo the other
primes. Downstream linear algebra can consume this partial set and repeat after fixing the
rest.

2. Use a postselection fallback. First unshift Y by the known T , that is, apply Y ← Y−2D2T b∗.
Then apply QFT−1 to T and keep the zero frequency. The outcome is a coherent uniform
coset on Z without computing T from Z. The zero frequency appears with probability 1/P .
Amplitude amplification raises this rate to Θ(1) at a cost of Θ(

√
P ) queries.

We adopt Definition 2.8. It gives deterministic cleanup with no postselection cost.

Alternative modulus choices. Under Definition 2.8 we can compute the coset label J = T
from Z mod P . Applying QFTZP

to J produces a flat spectrum over ZP , but this step alone does
not force Eq. (1.2). A safe route is to map J back into Z by −2D2J b∗ (mod M2) and then apply
QFT⊗n

ZM2
, identical to the main path. We keep the J-free variant for clarity.
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5 Conclusion

We presented a reversible Step 9† that (i) cancels unknown offsets exactly, (ii) synthesizes a coherent,
uniform CRT-coset state without amplitude periodicity, and (iii) yields the intended modular linear
relation via an exact character-orthogonality argument. The subroutine is simple to implement,
asymptotically light, and robust. We expect the pair-shift difference pattern to be broadly useful in
windowed-QFT pipelines whenever unknown offsets obstruct clean CRT lifting.
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Appendices

A Mechanics inside Step 9†

Offset cancellation. Write

X(j) =
(
2D2j b∗1

∣∣ 2D2j b∗[2..n]+v∗
[2..n]

)
, X(j+T ) =

(
2D2(j+T ) b∗1

∣∣ 2D2(j+T ) b∗[2..n]+v∗
[2..n]

)
.

Then
X(j)−X(j + T ) ≡ −2D2T b∗ (mod M2),

so the offset v∗ vanishes identically.

Uniform CRT coset on Z. After Step 9†.4 we have erased T from the rest. A uniform
superposition over T ∈ ZP maps by

T 7−→ −2D2T b∗ (mod M2)

to a coherent uniform coset on Z of length P . No amplitude reweighting appears. The image is
cyclic of order P by Lemma 3.7.

Orthogonality check. For any u the phase base is

r = exp
(
− 2πi

M2
2D2 ⟨b∗,u⟩

)
.

We have
rP = exp

(
− 2πi

M2
2D2P ⟨b∗,u⟩

)
= 1,

with M2 = D2P . So the P -term geometric sum collapses exactly. Equivalently,

−2D2

M2
≡ − 2

P
(mod 1),

which makes the reduction to phases modulo P explicit.

B Proof of State Factorization

For completeness, we show that the state after cleanup (Step 9†.4) factors as claimed, and we contrast
it with the pre-cleanup mixed state on Z (this also makes Prop. 2.10 fully formal). Let the joint
state after Step 9†.2 be

|Φ2⟩ =
1√
P

∑
t∈ZP

∑
j

α(j) |X(j)⟩X |X(j) + 2D2t b∗⟩Y |t⟩T .

Computing Z← X−Y gives

|Φ3⟩ =
1√
P

∑
t

∑
j

α(j) |−2D2t b∗⟩Z |X(j)⟩X |X(j) + 2D2t b∗⟩Y |t⟩T .
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Tracing out (X,Y, T ) at this point leaves the mixed state

ρZ =
1

P

∑
t∈ZP

|−2D2t b∗⟩⟨−2D2t b∗| ,

since the different t-branches are orthogonal in the T -register. Under Definition 2.8, Step 9†.4
computes t from Z mod P and uncomputes the original T -register (and X,Y), yielding the factorized
pure state (∑

j

α(j) |junk(j)⟩
)
⊗ 1√

P

∑
t∈ZP

|−2D2t b∗⟩Z ,

which is exactly Eq. (3.2).

C Gate skeleton for the shift and difference

Route map. Items (1), (2), and (4) below are used only in the re-evaluation route; the J-free route
uses item (3) directly to form Z← −T ·∆ and skips copy/difference. Cleanup (item (5)) applies to
both routes (with the re-evaluation sub-steps when Y is present).

Each coordinate uses the same pattern (we suppress the index):

1. Copy: CNOTs (or modular adds) from X into Y .

2. Shift (optional re-evaluation route): add 2D2b∗ · T into Y via a controlled modular adder with
precomputed 2D2b∗ (mod M2).

3. Shift (default J-free): set Z ← −T ·∆ (mod M2) using double-and-add with ∆ as read-only data
(no classical access to b∗).

4. Difference: set Z ← X − Y using a modular subtractor; this can overwrite X if desired.

5. Cleanup: use the harvested ∆← X(1)−X(0); compute T ′ ← f(Z,∆) into an auxiliary by, for each
pη, choosing a coordinate with ∆i ̸≡ 0 (mod pη), inverting ∆i modulo pη, and CRT-recombining;
if using the optional route, update Y ← Y +

(
X(J + T − T ′) − X(J + T )

)
via the reversible

evaluator Uprep; set T ← T − T ′; if using the optional route, apply the inverse of the copy to clear
Y ; uncompute T ′ from Z. (All steps preserve Z.)

Phase discipline. All arithmetic inside Uprep uses classical reversible (Toffoli/Peres) adders/multipliers;
no QFT-based adders are used. This ensures that applying Uprep on superpositions introduces no
data-dependent phases.
Determinism across invocations. Basis calls to Ucoords (such as 0, 1 or J, J+1) use fixed classical
constants within a single run so that X(·) is reproducible as computational-basis data.

Variant: pair-evaluation without classical b∗. Let Uprep denote the arithmetic evaluator that
sends |j⟩ |0⟩ 7→ |j⟩ |X(j)⟩ using the harvested (V,∆) (suppressing ancillary work registers). Retain a
label J ≡ j (mod P ). Then implement Step 9†.2 as follows:

1. Compute J + T in place (mod P ).

2. Run Uprep on input J + T into Y to obtain X(j + T ).
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3. (Optionally) restore J by subtracting T .

The subsequent difference Z ← X − Y yields Z ≡ −2D2T b∗ (mod M2), with the offsets cancelling
identically. This realization needs no classical access to b∗ (nor to v∗).

Implementation note. In practice, set ∆ = X(1) −X(0) (harvested once) and reduce (∆,Z)
modulo each pη in parallel. For each prime, choose the lexicographically smallest coordinate i(η)
with ∆i ̸≡ 0 (mod pη) (deterministic and reversible), compute ∆−1

i(η) (mod pη) via a reversible
extended Euclidean algorithm, and form Tη ≡ −∆−1

i(η)Zi(η) (mod pη). Recombine the residues by
a reversible CRT (e.g., Garner mixed-radix), keeping the mixed-radix digits and running-product
moduli so they can be uncomputed exactly in reverse. Since gcd(D,P ) = 1 and each pη is odd,
the factors 2 and D2 are units modulo every pη, and residue accessibility guarantees the existence
of at least one invertible coordinate per prime. Keep T ′ as a dedicated scratch register that is
not modified by any other step until it is uncomputed by inverting its computation from Z. For
preparing 1√

P

∑
t∈ZP

|t⟩, the per-prime preparation
⊗

η
1√
pη

∑
tη∈Zpη

|tη⟩ followed by CRT wiring
is exact and avoids approximation issues associated with a monolithic QFTZP

; this mirrors the
modulus-splitting/CRT bookkeeping already used in Chen [2024]. The unit factor −2 in the generator
is immaterial (any fixed unit modulo P yields the same annihilator); we keep it to match Eq. (1.1).

D Run-local determinism

A run is one coherent execution from the start of state preparation up to (and including) Step 9†.
Within a run, the coordinate evaluator Ucoords uses a fixed set of classical constants (including any
classical values obtained by earlier measurements in the same run, such as y′, z′, h∗ in Chen [2024]).
Hence, the basis outputs X(0) and X(1) are reproducible within that run. We harvest

V := X(0), ∆ := X(1)−X(0) ≡ 2D2 b∗ (modM2),

once on literal inputs j = 0, 1 and then treat (V,∆) as read-only basis data.
All superposition-time arithmetic (copy/shift/difference/cleanup) is implemented by classical

reversible circuits (no QFT-based adders), so it is a permutation of computational-basis states and
introduces no data-dependent phase (Lemma 2.3). We never call Ucoords on a superposed input.

Approximate QFTs may be used for standard transforms; their approximation error is tracked
separately (Remark after Theorem 3.9) and is unrelated to determinism of (V,∆).

Across different runs, the upstream randomness, offsets, and even the arithmetic constants used
by Ucoords may change. Our proofs do not assume that (V,∆) are identical across runs, nor do they
assume any global seeding, device-level determinism, or that the overall global phase is fixed. The
only place determinism is needed is to ensure that the single-run harvest (V,∆) is well-defined and
then reused verbatim by Uprep in that same run.

Under this scope, the cleanup step can always compute T ′ from (Z,∆) when Definition 2.8 holds,
guaranteeing the factorization in Eq. (3.2). If desired, one may even measure (V,∆) early and cache
them as classical strings; this does not affect correctness or phases because we never feed Ucoords

with a superposition.
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