Language Server CLI Empowers
Language Agents with Process Rewards

Yifan Zhang! and Lanser Contributors

'Princeton University
yifzhang@princeton.edu

October 24, 2025

Abstract

Large language models routinely hallucinate APIs and mislocalize edits, while language
servers compute verified, IDE-grade facts about real code. We present Lanser-CLI, a CLI-first
orchestration layer that pins and mediates a Language Server Protocol (LSP) server for coding
agents and CI, exposing deterministic, replayable workflows. Our position is that language
servers provide not only structural information (definitions, references, types, diagnostics) but
also an actionable process reward: machine-checked, step-wise signals that align an agent’s
planning loop with program reality.

In this work, Lanser-CLI contributes: (i) a robust addressing scheme beyond brittle
file:line:col via a Selector DSL (symbolic, AST-path, and content-anchored selectors)
with a principled relocation algorithm; (ii) deterministic Analysis Bundles that normalize Lan-
guage Server responses and capture environment/capability metadata with stable content hashes;
(iii) a safety envelope for mutating operations (rename, code actions) with preview, workspace
jails, and Git-aware, transactional apply; and (iv) a process-reward functional derived from
Language Server facts (diagnostic deltas, disambiguation confidence, and safe-apply checks) that
is computable online and replayable offline. We formalize determinism under frozen snapshots
and establish a monotonicity property for the process reward, making it suitable for process
supervision and counterfactual analysis.

Project Page: https://github.com/yifanzhang-pro/lanser-cli

1 Introduction

Large language models (LLMs) have catalyzed a wave of coding agents, yet their textual guesses
about static structure, side effects, and symbol identity routinely drift from reality. By contrast,
Language Server Protocol (LSP) servers compute verifiable facts: definitions, references, types,
diagnostics, and safe edits. We ask a concrete question:

How should Language Agents obtain structural information and
process reward via Language Servers?

Our answer is twofold. First, a CLI-first, agent-native layer is the right binding for language
servers in planner-act loops because CLIs compose with Unix tooling, serialize cleanly to artifacts,

https://github.com/yifanzhang-pro/lanser-cli

and are easy to containerize and gate in CI. Second, the same layer can transform server facts into
a process reward that supervises intermediate steps (plan, locate, verify, apply) rather than only
terminal outcomes.

Requests
Language Agent Language Server Orchestrator
(GPT Codex, Claude Code) (Lanser-CLI)
wer (JSON-RPC)

Language Server
(e.g. Pyright)

Files & Index
\ 4

Code Workspace

Figure 1 A language agent interacts with the Lanser-CLI orchestrator, which speaks JSON-RPC to a pinned
LSP server (e.g., Pyright) over a concrete workspace. The orchestrator turns transient protocol sessions into
stable artifacts.

Lanser-CLI is built around four goals that raw LSP usage does not guarantee: (i) determinism
and replay; (ii) robust addressing that survives edits; (iii) safety for mutating operations; and (iv)
process supervision via machine-checked signals correlated with task success. These goals shape the
architecture and surface area of the CLI.

Rather than bespoke editor plug-ins or ad-hoc RPCs, Lanser-CLI turns language-server interac-
tions into schema-validated JSON artifacts with explicit environment provenance and byte-stable
hashing, yielding an auditable substrate for planner-act loops and CI. The artifacts support offline
replay and enable counterfactual evaluation of agent decisions. Conceptually, Lanser-CLI separates
three concerns: (i) addressing (what code element an agent intends), (ii) analysis (what the Language
Server states about it), and (iii) application (how to enact a mutation safely). This separation
allows plans to compose with clear contracts and measurable failure modes.

We instantiate against the Language Server Protocol (LSP) (Microsoft, 2025a) using Pyright for
Python (Microsoft, 2025b).

Our Lanser-CLI offers: (i) a Selector DSL and PositionSpec union that addresses code seman-
tically (symbol, AST path, content anchor) and survives edits (section 3); (ii) a deterministic
repositioning algorithm with ambiguity surfacing and explicit evidence; (iii) Analysis Bundles
with environment capture (server version, positionEncoding, interpreter, configuration digest)
and a stable bundleld (section 5); (iv) safe mutating flows (previewed rename, transactional ap-
ply, workspace jail, dirty-worktree guardrails); (v) Record/Replay for byte-stable regeneration of
past outputs under a frozen snapshot; (vi) an SDK and batch interface for high-throughput agent
pipelines; (vii) stable symbol identifiers (symbolId) derived from structural fingerprints for cross-edit
identity; and (viii) a process-reward functional that converts LSP-verified facts into per-step signals
usable for process supervision and credit assignment (section 5).

Remark 1.1 (Bootstrapping). Lanser-CLI is utilized during its own development: we run
Lanser-CLI to prepare and preview refactors in this repository, validate schema changes against
historical traces, and replay bundles in CI to detect nondeterminism.

2 System Design of Language Server CLI

2.1 Motivation: Bridging the Agent-Server Gap

While Language Servers provide a common vocabulary for code analysis, integrating them reliably
into autonomous agent loops exposes fundamental gaps. To be effective at scale, agents require four
key capabilities that raw Language Server interactions do not provide.

First, raw server outputs can be fragile; coordinates are brittle, and server defaults (e.g., utf-16
indexing) often mismatch agent I/0, leading to off-by-one and encoding errors. This necessitates:
(i) determinism, including stable response ordering, content hashing, and version pinning; and (ii)
robust addressing, using selectors that can survive code edits and resist positional drift.

Second, automated edits are inherently risky. Agents therefore require (iii) safety, implemented
as a set of guardrails for mutating operations.

Finally, a fourth piece is often overlooked: (iv) process supervision. Agents benefit from inter-
mediate, verifiable feedback that is correlated with final task success (e.g., “diagnostics decreased,”
“rename is safe,” “ambiguity resolved”).

Lanser-CLI is designed to close these gaps by transforming inherently interactive language-server
sessions into verifiable, replayable artifacts. This achieves protocol grounding for LLM agents—preferring
machine-checked facts over model speculation—and exposes a shaped process reward computable
directly from those artifacts.

2.2 Architecture Overview

The design of Lanser-CLI is centered on an orchestrator that mediates all agent-server communi-
cation. This component manages the language-server lifecycle (start/stop, capability negotiation,
cancellation, restarts with backoff), synchronizes document state, and normalizes server responses,
ultimately emitting Analysis Bundles.

Beyond session management, the orchestrator implements a lightweight cache to coalesce identical
in-flight queries (a single-flight pattern) and serves subsequent callers from memoized bundles. A
comprehensive tracing system captures all JSON-RPC frames and workspace digests, enabling
Record/Replay to regenerate byte-stable outputs offline for auditing and testing.

Environment capture. Each Analysis Bundle records {serverVersion, positionEncoding,
pythonExe, pythonVersion, venvPath, configDigest, platform}, enabling reproducibility checks
and differential debugging across machines.

Contracts and invariants. All location lists are ordered by the total order (uri,sL,sC,eL,eC)
with stable tie-breakers. bundleld is the SHA-256 of a JCS-canonicalized subset of fields that
excludes volatile timestamps. Given an identical workspace snapshot, server/version/encoding, and
request, Lanser-CLI yields a byte-identical bundle; see Theorem 5.1. Replayability extends to any
scalar computed solely from bundle contents (e.g., the process reward in Section 5).

3 Selectors and Repositioning

3.1 The Selector DSL for Robust Addressing

Agents require references that can survive edits, a need unmet by brittle file:1line:col coor-
dinates. The Lanser-CLI Selector DSL is designed to capture intent rather than absolute byte
offsets by unifying multiple addressing strategies. Selectors are represented programmatically as a
PositionSpec (a tagged union) and textually as a canonical string, which are resolved to concrete
ranges by a deterministic relocation procedure.

PositionSpec (Structured Union). The PositionSpec defines the internal, structured representa-
tion for all selector types, enabling rich, programmatic specification:
e Cursor: {kind:"cursor", uri, line, col, indexing:"utf—16|utf—8|codepoint"}

e Range: {kind:"range", uri, start:[1l,c], end:[1,c]l}

e Symbolic: {kind:"symbol", qualname:"pkg.mod:Class.method", role:"def|sig|bodyl|doc",

overload:0}

e AST path: {kind:"ast", path:[["module","pkg.mod"], ["class","C"],["def","m"]1]1}

e Content anchor: {kind:"anchor", uri, snippet:"def load data(", ctx:24, hash:"shal:..

All forms optionally carry docVersion (a document snapshot identifier) to pin relocation to a
specific, known version of a file.

Canonical String Form. For CLI usage, logging, and human readability, the Selector DSL provides
a compact, canonical string-based syntax that maps directly to the PositionSpec structures:

Cursor/range
src/app.py@L42:C7
src/app.py@R(42,7->44,1)

Symbolic
py://pkg.mod#Class.method:body
py://pkg.mod#function_name:sig

AST path (subset)
ast://[module=pkg.mod]/[class=Class]/[def=method] /name[1]

Content anchor (snippet + context N chars)
anchor://src/app.py#"def load_data("7ctx=24

3.2 Indexing Semantics and Encoding

A critical detail for coordinate-based selectors (Cursor and Range) is the handling of position
encoding, a common source of off-by-one errors. Lanser-CLI negotiates positionEncoding with
the server at initialize, preferring utf-16 (per LSP specification) but also supporting utf-8.
While the server operates on its negotiated encoding, CLI I/O can be declared separately via
—-index-io=utf-8|utf-16|codepoint. We adopt codepoint to mean Unicode scalar values. When

)

server and CLI indexings differ, Lanser-CLI emits both coordinate systems in verbose mode and
records the negotiated server-side encoding in bundle metadata. This explicitly surfaces and resolves
the ambiguity of LSP’s default UTF-16 indexing, which often mismatches the UTF-8 context
common in client tools (Microsoft, 2025a).

3.3 Repositioning and Ambiguity Resolution

Beyond managing encodings, the primary challenge is ensuring selectors remain valid as code evolves.
This is the task of the RELOCATE algorithm (algorithm 1), which resolves a (potentially stale)
selector against the current workspace state and surfaces ambiguity with ranked, deterministic
evidence.

Strategy. Given a selector, Lanser—CLI resolves its position as follows: (1) attempt a direct map
via docVersion if the snapshot is available; (2) reparse the workspace and resolve symbolic/AST
paths against the current code structure; (3) for content anchors, perform a fuzzy match using
winnowed k-grams within a context window; (4) score all candidates and disambiguate using a
deterministic scoring model.

Scoring. Let s,5t be an AST-kind match indicator, Smodqule @ module-equivalence score, Jioken
token Jaccard, and sprox @ proximity score. All features are normalized to [0, 1]. We define a convex
combination for ranking candidates:

score(s,c) = 0.58a5t + 0.2 Smodule + 0.2 Jroken + 0.1 Sprox. (3.1)

Ties are broken lexicographically on (uri, range), inducing a total order. Each bundle records the
weights, features, and normalization steps used for auditability, and surfaces top-k alternatives when
max score < 7 (indicating ambiguity).

Correctness sketch. Under a frozen snapshot, symbolic and AST selectors resolve to a unique target
or return E/AMBIGUOUS. For anchors, if the snippet hash matches within the context window and no
conflicting exact matches exist, RELOCATE returns the original range with score 1.0; otherwise, it
ranks candidates by the convex combination above. Deterministic sort keys ensure identical outputs
across runs.

Error taxonomy. Bundles carry structured error codes and, where applicable, disambiguation
candidates with scores and explanations. Common errors include: E/NOT_FOUND, E/AMBIGUQOUS,
E/VERSION_SKEW, and E/INDEXING _MISMATCH.

4 Interfaces, Bundles, and Safety

Lanser-CLI exposes its orchestration capabilities through a CLI-first interface, providing a robust
command structure designed for both interactive use and integration into automated agent loops or
CI pipelines. The interface is functionally partitioned to handle code navigation, safe mutations,
batch processing, and artifact validation.

Algorithm 1 Lanser-CLI Repositioning (RELOCATE)

Require: Selector s, workspace W, optional snapshot v
Ensure: Ranked candidates C with explanations
1: C+0
if v is present and W has exact map(s,v) then return {(map(s,v),1.0)}
end if
if s.kind € {symbol, ast} then
A <+ resolve_structural(s, W) > module import graph + parser
C+~CUA
end if
if s.kind = anchor then
H <+ fuzzy_within_ctx(s.snippet, s.ctx; k=7, w=4)
C+~CUH
: end if
: for all c € C do
c.score < f(s,c) > Eq. (1): deterministic weights
: end for
: C « sort_desc(C, score, uri, range)
:if C =0 then
return ERROR(E/NOT_FOUND)
: end if
. if ties or low top-score then
attach disambiguation evidence
- end if
: return C[1..k]|

N N N = = = = = = = e e e
N = O © 0 O U W=D

Navigation Interface. Read-only operations for structural analysis are grouped under a set
of navigation commands. Standard Language Server queries such as lanser def, refs, hover,
symbols, and diag are supported, each accepting any POSITIONSPEC (as defined in Section 3) as
its input target. A dedicated lanser locate command serves to resolve abstract selectors into
concrete, verifiable ranges, offering an optional preview of the targeted code.

Safe Mutations and Guardrails. Mutating operations are designed with a ”safety-first” principle.
For instance, lanser rename is gated by a preceding prepare-rename check and defaults to a
preview-only mode; explicit application of the changes requires the ——apply flag. This entire process
is protected by a multi-layered safety envelope, including a ”workspace jail” (to prevent writes
outside the project root), configurable allow/deny path filters, and a dirty-worktree refusal (which
can be overridden with -—allow-dirty), directly addressing the safety requirements for automated
edits.

Batch Processing and Tracing. To support high-throughput agent pipelines, lanser batch
executes command queues from JSONL-formatted input and produces structured JSONL responses
suitable for planners. Any command can emit a complete JSONL trace of orchestrator metadata
and underlying JSON-RPC traffic via -—trace-file. This trace enables lanser trace replay to

regenerate byte-stable outputs offline, ensuring deterministic reproducibility.

Schema Contracts and Bundles. To guarantee reliable integration, Lanser-CLI provides explicit,
machine-readable contracts. The lanser schema subcommands can export and validate the JSON
Schemas for both the SELECTOR DSL inputs and the resulting output artifacts (Analysis Bundles).
This contract-based approach allows an agent to validate its payloads before execution and permits
CI systems to gate changes based on schema compatibility. Deterministic bundles, which encapsulate
facts and metadata from an operation, are the core data artifact of the system and are detailed in
Section 5.

5 Process Rewards from Structural Signals

Planner-act loops benefit from verifiable intermediate signals. We expose a shaped process reward
computed from LSP-derived facts that (i) is available online during planning, (ii) is deterministic
and replayable from bundles, and (iii) correlates with final task success.

Our instantiation is compatible with potential-based reward shaping from reinforcement learn-
ing (Ng et al., 1999), while grounding the potential in machine-checked program facts rather than
latent model states.

Definition. Let D; be the count of server diagnostics relevant to the current target at step t,
Sy € {0, 1} indicate that all safety checks passed for a prospective mutation (prepare-rename accepted,
workspace jail holds, no conflicts), and a; € [0, 1] denote the top disambiguation confidence for a
selector resolution. Define

re = Oé(thl—Dt) + BSt - 7(1—0@), (51)
with fixed a, 8,7 > 0 recorded in bundle metadata. The first term rewards diagnostic reduction,
the second rewards safe readiness to apply, and the third penalizes residual ambiguity.

5.1 Deterministic Analysis Bundles

Analysis Bundles normalize Language Server payloads and pin environment metadata. Lists are
deterministically ordered by (uri, sL, sC,eL, eC) with explicit tiebreakers. Each bundle has a stable
bundleId computed as a hash over a canonicalized subset of fields (excluding volatile timestamps).

Response Envelope.

{
"version": "1.2",
"bundleId": "sha256:...",
"status": "ok",
"request": {"cmd": "definition", "selector": {...}},
"resolution": {"original": "...", "resolved": {...}, "disambiguation": [...]},
"facts": {"definitions": [...], "hover": {...}, "provenance": "lsp"},

"edits": {"workspaceEdit": null, "diff": null},
"processReward": {

"version": "pr-vi",
"r": 0.872,
"components": {"diag_delta": 1, "safety": 1, "ambiguity_penalty": 0.28,
"alpha_conf":0.72},
"weights": {"alpha":0.5,"beta":0.4,"gamma":0.1},
"explanation": "Eq. (\\ref{eq:proc-reward}) over frozen snapshot"
3,
"environment": {"server": {"name":"pyright","version":"1.1.406"},
"positionEncoding":"utf-16","python":{"version":"3.12.0"}, ...},
"capabilities": {"partialResult": false, "cancellable": true},
"meta": {"exit_code": O,
"sorting_keys": ["uri","range[0]","range[1]","range[2]","range[3]"]
b
+

Proposition 5.1 (Determinism under frozen snapshot). Fix a workspace snapshot S, Language
Server server binary and configuration (V,II), negotiated positionEncoding, and request). Then
Lanser-CLI produces identical bundles B across runs, i.e., bundleId(B) is constant.

Proof sketch. The orchestrator (i) enforces deterministic sorting; (ii) canonicalizes JSON via the
JSON Canonicalization Scheme (JCS) (Rundgren et al., 2020); (iii) records environment invariants
in the envelope; and (iv) excludes non-deterministic fields from the hash domain. Given identical
inputs, Language Server responses are a function of (S, V,II); thus, the resulting canonical JSON,
and hence bundleld, is invariant. O

Proposition 5.2 (Monotonicity of process reward under invariants). Under a frozen snapshot and
fixed toolchain (S, V,II), suppose an agent step does not increase ambiguity (ay > ay—1) and does
not violate safety (S; > S;—1), while weakly decreasing diagnostics (D; < D;_1). Then for any
non-negative weights in Eq. (5.1), r; > 0.

Proof sketch. Each term is non-negative under the stated conditions: (Dy;—1 — D;) >0, S; > 0, and
(1—ay) <(1—a4_1). With «, 8,7 > 0, the sum is non-negative. Because bundles are deterministic
under Theorem 5.1, r; is replayable. O

5.2 Editing and Guardrails

Transactional Edit Application. Lanser-CLI ensures that workspace edits are applied transac-
tionally to maintain file system integrity. The process involves writing changes to temporary
files, synchronizing them to disk via fsync, and then atomically replacing the original files using
the rename(2) syscall. This procedure ensures that file metadata, including permissions, line
endings, and character encoding, is preserved. As an alternative, Lanser-CLI can leverage git
apply --3way for patch application, which enables robust conflict detection. If a merge conflict
occurs, the system reports a structured E/APPLY_CONFLICT error, including machine-readable conflict
hunks. Additional file system integrity checks are enforced; for example, attempting a case-only
rename (e.g., file.py to File.py) on a case-insensitive file system is prohibited, resulting in an
E/FS_PERMISSIONS error.

Algorithm 2 Guarded Rename (PREVIEWTHENAPPLY)

Require: selector s, new name n, mode € {dry-run, apply}

assert clean git worktree or -—allow-dirty

if |prepareRename(s) then return ERROR

E + textDocument/rename(s, n) > WorkspaceEdit preview
D « diff(E); emit preview; if mode=dry-run then return D

apply atomically with jail + filters; if conflict then return E/APPLY_CONFLICT

notify server via didChange; return success bundle with D

Threat Model and Safety Envelope. The primary threats during automated editing include: (i)
incorrect selector resolution leading to unintended edits; (ii) partial application of changes due to
system failure; (iii) “workspace escapes” where edits affect files outside the intended project root;
(iv) use of stale configuration; and (v) mismatches in file encoding or position indexing.

Lanser-CLI implements a multi-layered safety envelope. Operations are preview-by-default
(-=dry-run). A “workspace jail” confines all file modifications to the project root, supplemented
by explicit allow/deny path filters. Mutating operations require a clean Git working tree unless
explicitly overridden (--allow-dirty). The system performs encoding detection and, in verbose
mode, reports dual coordinates (e.g., UTF-16 and UTF-8) to prevent indexing errors. Ambiguity in
selectors is explicitly surfaced with confidence scores, and atomic application ensures that partial
failures can be rolled back.

Safety trade-offs are exposed as explicit policy hooks for CI systems and planning agents. Key
controls include --deny-apply-on-ambiguous, the ——workspace-jail flag (enforced by default),
and --allow-dirty. These controls allow operators to configure the desired balance between
automation and safety.

Our guardrails complement established program-transformation and differencing tools such as
GumTree (Falleri et al., 2014) and refactoring detectors like RefactoringMiner (Tsantalis et al.,
2018), but focus on determinism, auditability, and Cl-grade safety envelopes.

6 Related Work

Language servers and static analysis. The Language Server Protocol provides a transport-agnostic
interface for definitions, references, diagnostics, and edits across IDEs and tools (Microsoft, 2025a).
We build on Python’s Pyright server for concrete instantiation (Microsoft, 2025b). Our selector
design intersects with AST-aware differencing and refactoring ecosystems; while systems like
GumTree (Falleri et al., 2014) and RefactoringMiner Tsantalis et al. (2018) focus on change
extraction and refactoring detection, Lanser-CLI emphasizes deterministic resolution and replayable
artifacts for agent loops.

Anchoring and robust localization. Content-anchored relocation in Lanser-CLI draws on local
fingerprinting via winnowing Schleimer et al. (2003) and classical text-index structures such as suffix
arrays Manber and Myers (1993), adapted to code-aware contexts and combined with structural
signals.

Agents that use tools. Language-model agents that plan and call external tools include ReAct (Yao
et al., 2022), PAL (Gao et al., 2023), and Toolformer (Schick et al., 2023). Unlike these, Lanser-CLI
converts language-server outputs into deterministic Analysis Bundles and a process reward usable

for supervision and credit assignment inside the agent loop.

Process supervision and reward shaping. Step-level guidance for LMs via self-feedback or verbal
reinforcement appears in Self-Refine (Madaan et al., 2023) and Reflexion (Shinn et al., 2023). Our
process reward connects this line to potential-based reward shaping from RL (Ng et al., 1999), with
the potential grounded in static-analysis facts rather than purely textual heuristics.

7 Conclusion

Lanser-CLI reframes how agents interact with language servers: determinism and replayability as
first-class properties, robust addressing that resists drift, and safety rails that make automated
edits auditable. Beyond structural facts, Lanser-CLI extracts a process reward that supervises
intermediate steps with machine-checked evidence. By turning Language Server facts into stable
Analysis Bundles and per-step signals, Lanser—CLI enables trustworthy planning, safer refactors,
reproducible CI, and process-supervised learning signals for agent training.

References

Jean-Rémy Falleri, Floréal Morandat, Xavier Blanc, Matias Martinez, and Martin Monperrus.
Fine-grained and accurate source code differencing. In Proceedings of the 29th ACM/IEEE
international conference on Automated software engineering, pages 313-324, 2014.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei Liu, Yiming Yang, Jamie Callan, and
Graham Neubig. Pal: Program-aided language models. In International Conference on Machine
Learning, volume 202, pages 10764-10799. PMLR, 2023.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al. Self-refine: Iterative refinement
with self-feedback. arXiv preprint arXiv:2308.17651, 2023.

Udi Manber and Gene Myers. Suffix arrays: a new method for on-line string searches. siam Journal
on Computing, 22(5):935-948, 1993.

Microsoft. Language server protocol specification, version 3.17. https://microsoft.github.
io/language-server-protocol/specifications/1lsp/3.17/specification, 2025a. Accessed
October 2025.

Microsoft. Pyright: Static type checker for Python. https://github.com/microsoft/pyright,
2025b. Accessed October 2025.

Andrew Y Ng, Daishi Harada, and Stuart Russell. Policy invariance under reward transformations:
Theory and application to reward shaping. In Ieml, volume 99, pages 278-287. Citeseer, 1999.

Anders Rundgren, Bret Jordan, and Samuel Erdtman. Rfc 8785: Json canonicalization scheme (jcs),
2020.

10

https://microsoft.github.io/language-server-protocol/specifications/lsp/3.17/specification
https://microsoft.github.io/language-server-protocol/specifications/lsp/3.17/specification
https://github.com/microsoft/pyright

Timo Schick, Jane Dwivedi-Yu, Roberto Dessi, Roberta Raileanu, Maria Lomeli, Eric Hambro, Luke
Zettlemoyer, Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can teach
themselves to use tools. Advances in Neural Information Processing Systems, 36:68539—68551,
2023.

Saul Schleimer, Daniel S Wilkerson, and Alex Aiken. Winnowing: local algorithms for document
fingerprinting. In Proceedings of the 2003 ACM SIGMOD international conference on Management
of data, pages 76-85, 2003.

Noah Shinn, Federico Cassano, Beck Labash, Ashwin Gopinath, Karthik Narasimhan, and
Shunyu Yao. Reflexion: Language agents with verbal reinforcement learning. arXiv preprint
arXiv:2303.11366, 2023.

Nikolaos Tsantalis, Matin Mansouri, Laleh M Eshkevari, Davood Mazinanian, and Danny Dig.
Accurate and efficient refactoring detection in commit history. In Proceedings of the 40th
international conference on software engineering, pages 483-494, 2018.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629,
2022.

11

Appendix

A Selector Grammar and Escaping (EBNF)
B Bundle Stability Rules

C Exit Codes

D Worked Example

E Process Reward Signals: Worked Examples

12

13

13

13

13

14

A Selector Grammar and Escaping (EBNF)

selector := cursor | range | symbolic | astpath | anchor

cursor := path "@" "L" INT ":" "C" INT

range := path "@" "R(" INT "," INT "->" INT "," INT ")"

symbolic := "py://" moduleref "#" qualname (":" role)7
moduleref:= IDENT ("." IDENT)x*

qualname := IDENT ("." IDENT | ":" IDENT)x*

role := "def" | "sig" | "body" | "doc"

path := RELPATH | "file://" URI_PATH

anchor := "anchor://" path "#" quoted_snippet ("?" "ctx=" INT)7
quoted_snippet := ’"’ { char | ’\"’ | ’\/> } "™

Escaping: percent-encode # 7 ¥ " <space> in anchor snippets and paths. Windows paths
canonicalize to file:///C:/... (uppercase drive letter).

Overloads, properties, and descriptors. Overloaded functions can be targeted via overload=i.
Properties use role :sig to target the getter signature; use :def to select the backing function
object.

B Bundle Stability Rules

e Deterministic list ordering: (uri,sL,sC,eL,eC).

e bundleld := sha256 over a JCS-canonicalized JSON of (request, resolution, facts, edits,
environment, capabilities, metax*), excluding volatile fields.

e Range encoding: flat [sL,sC,eL,eC] integer array.
e Size limits: cap references to 10° entries; mark truncation and expose a pagination cursor.

e Canonicalization: JSON Canonicalization Scheme (JCS) with UTF-8 encoding; meta.hashing.algo
= "sha256-jcs-v1".

e Dual coordinates: when CLI I/O differs from server encoding, include both coordinate systems in
verbose traces; bundles retain server coordinates.

C Exit Codes
D Worked Example

Definition query.
lanser def py://pkg.mod#Class.method:sig --json

Returns a Analysis Bundle with the resolved range, hover signature, and environment metadata
(serverVersion=1.1.406, positionEncoding=utf-16).

13

Code Symbol Meaning Retryable

0 OK Success —
2 E/BAD_SELECTOR_-SYNTAX Selector parse error No
3 E/NOT_FOUND No resolvable target Sometimes
4 E/AMBIGUOUS Multiple candidates Yes

10 E/VERSION_SKEW Snapshot mismatch Yes

64 E/LS_TIMEOUT Server timeout Yes

65 E/LS_CRASH Server crashed Yes

70 E/APPLY_CONFLICT Patch could not be applied Manual

71 E/FS_PERMISSIONS Write denied No

72 E/UNSUPPORTED_CAP Server lacks capability No

73 E/REQUEST_CANCELLED Request was cancelled Yes

74 E/CONTENT_MODIFIED Content changed mid-request Yes

75 E/INDEXING_UNSUPPORTED IO indexing unsupported No

76 E/REPLAY MISMATCH Trace/workspace digest mismatch ~ No

Rename.

lanser prepare-rename py://pkg.mod#load_data:def --json
lanser rename py://pkg.mod#load_data:def new_name --dry-run
lanser rename py://pkg.mod#load_data:def new_name --apply

The preview includes a unified diff; the apply path enforces workspace jail and dirty-repo policies.

E Process Reward Signals: Worked Examples

Signals and weights. We instantiate Eq. (5.1) with («, 8,7) = (0.5,0.4,0.1).
Example 1: Diagnostic reduction, safe apply, confident resolution. An agent proposes to rename
load_data to read_data. Pyright reduces relevant diagnostics from D;_1=5 to D;=2 after a dry-run,

prepareRename succeeds and the workspace jail holds (S;=1), and the selector relocation reports
a;=0.94. Then

re=05-(5-2)+04-1—-0.1-(1—0.94) ~ 1.5+ 0.4 — 0.006 = 1.894.

The bundle records {"diag delta": 3, "safety": 1, "ambiguity penalty": 0.06}.

Example 2: Ambiguous selector, no safety clearance. The agent attempts a refactor with
unresolved imports. Diagnostics stagnate (D;_1=7, D;=T7), safety checks fail (5;=0), and ambiguity
remains (a;=0.62). Then r, = 0—0.4—0.1-0.38 = —0.438, discouraging application until ambiguity

is resolved.

Replayability. Because processReward is computed from deterministic bundle contents and fixed
weights, the same 7, is recovered by lanser trace replay. This supports offline evaluation and
counterfactual policy analysis without re-running the language server.

14

Design note. The reward is shaping, not a replacement for task success metrics. It is intended for
online guidance and offline process supervision, and is safe under Theorem 5.2 when the invariants
hold.

15

	Introduction
	System Design of Language Server CLI
	Motivation: Bridging the Agent-Server Gap
	Architecture Overview

	Selectors and Repositioning
	The Selector DSL for Robust Addressing
	Indexing Semantics and Encoding
	Repositioning and Ambiguity Resolution

	Interfaces, Bundles, and Safety
	Process Rewards from Structural Signals
	Deterministic Analysis Bundles
	Editing and Guardrails

	Related Work
	Conclusion
	Appendices
	Selector Grammar and Escaping (EBNF)
	Bundle Stability Rules
	Exit Codes
	Worked Example
	Process Reward Signals: Worked Examples

