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Abstract

The quadratic cost of scaled dot-product attention is a central obstacle to scaling autoregressive
language models to long contexts. Linear-time attention and State Space Models (SSMs) provide
scalable alternatives but are typically restricted to first-order or kernel-based approximations,
which can limit expressivity. We introduce Higher-order Linear Attention (HLA), a causal,
streaming mechanism that realizes higher interactions via compact prefix sufficient statistics. In
the second-order case, HLA maintains a constant-size state and computes per-token outputs in
linear time without materializing any n×n matrices. We give closed-form streaming identities, a
strictly causal masked variant using two additional summaries, and a chunk-parallel training
scheme based on associative scans that reproduces the activations of a serial recurrence exactly.
We further outline extensions to third and higher orders. Collectively, these results position HLA
as a principled, scalable building block that combines attention-like, data-dependent mixing with
the efficiency of modern recurrent architectures.

Project Page: https://github.com/yifanzhang-pro/HLA

1 Introduction

The Transformer architecture (Vaswani et al., 2017), powered by scaled dot-product attention,
underpins modern large language models (LLMs). Yet the O(n2) computational and memory
complexity in sequence length n constrains long-context use. A rich line of work therefore explores
more efficient attention mechanisms (e.g., Linear Attention (Katharopoulos et al., 2020; Wang et al.,
2020; Choromanski et al., 2020; Schlag et al., 2021; Sun et al., 2023; Qin et al., 2023; Yang et al.,
2023; Qin et al., 2024; Yang et al., 2024b; von Oswald et al., 2025)), Modern Recurrent Neural
Networks (RNNs) (Peng et al., 2024; Sun et al., 2024; Peng et al., 2025), Fast Weight Programmers
(Delta Networks, Schlag et al. (2021)), State Space Models (SSMs) (Gu et al., 2021; Gu and Dao,
2023; Dao and Gu, 2024) and Memory Networks (Behrouz et al., 2024, 2025a,b), which admit O(1)
per-token state updates at inference.

We propose Higher-order Linear Attention (HLA), generalizing linear attention by incorporating
higher interactions through compact prefix summaries (sufficient statistics). The key observation is
that higher attention-like operators admit factorized forms in terms of low-order moments (e.g., sums
of key outer products), enabling exact causal streaming without constructing attention matrices.
In the second-order case, HLA maintains an constant-size state per head and produces outputs in
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linear time per token (O(d2+d dv), here d is the query/key dimension and dv the value dimension,
independent to the sequence length).

We address two central challenges: (i) enforcing strict autoregressive causality at second-order
without sacrificing streaming updates or introducing any n×n intermediates; and (ii) enabling
chunk-parallel training that exactly matches the activations of a serial recurrence. First, we derive
an exact masked formulation that enforces strict autoregressive causality by augmenting the state
with two additional summaries; the resulting algorithm remains streaming and efficient. Second,
we present a chunk-parallel training scheme based on an associative (monoid/semidirect-product)
operator that yields the same activations as a serial loop while exploiting intra- and inter-chunk
parallelism.

Our contributions are summarized as follows:

1. Exact masked streaming at second order. We give a complete algebra of extended summaries
that yields strictly causal second-order HLA with per-token constant cost, together with formal
statements and proofs establishing masked streaming identities and online updates. The unnor-
malized HLA is the default operator; the ratio-normalized variant is an option built from the
same summaries.

2. Associative scans that match serial activations. We define an associative (semidirect-product)
operator for unmasked and masked settings (with and without exponential decay) and prove that
a standard exclusive scan produces forward activations identical to those of a serial recurrence.
We also state the reverse-mode algebra.

3. Third-order extension. We present the full masked third-order state and online updates, with a
strictly causal streaming kernel.

HLA is intended as a drop-in, attention-like mixer for long-context models. It provides (i)
attention-style, data-dependent weighting; (ii) strictly causal streaming with O(1) per-token update
memory independent of sequence length; and (iii) parallel training via scans without resorting to
approximate backpropagation through time. We deliberately focus on algorithmic structure and
implementation.

2 Background

Notations. We use bold lowercase for vectors and bold uppercase for matrices/tensors. Token
index t denotes the current time; d is the query/key dimension; dv is the value dimension. Unless
otherwise stated, HLA outputs are in the default unnormalized form, which avoids length-dependent
renormalization. We adopt row-vector outputs ot ∈ R1×dv ; a ratio-normalized (row-normalized)
variant divides by a masked scalar denominator built from the same summaries for scale control
and comparability with linear attention. Throughout, prefix summaries are statistics computable in
streaming fashion with O(1) memory per token and per head.

2.1 Scaled dot-product attention

Given queries Q ∈ Rn×d, keys K ∈ Rn×d, and values V ∈ Rn×dv , scaled dot-product atten-
tion (Vaswani et al., 2017) is

Attn(Q,K,V) = softmax

(
QK⊤
√
d

+ Λ

)
V,
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where Λ ∈ Rn×n is the additive causal mask (zeros on and below the diagonal; −∞ above). For
algebraic manipulations outside the softmax (e.g., Section 3.1), we use the Hadamard product ⊙
with a binary causal mask, denoted by L (ones on and below the diagonal; zeros above), to mask
bilinear forms consistently.

2.2 Linear attention

Linear attentions (Wang et al., 2020; Katharopoulos et al., 2020; Choromanski et al., 2020) approxi-
mate the softmax kernel by a feature map ϕ : Rd→Rr (maybe unnormalized):

Attn(Q,K,V)i ≈
ϕ(qi)

⊤(∑
j ϕ(kj)v

⊤
j

)
ϕ(qi)⊤

(∑
j ϕ(kj)

) .

Maintaining the running sums
∑

j ϕ(kj)v
⊤
j and

∑
j ϕ(kj) yields O(n r(d+dv)) time and O(r dv)

memory complexity.

3 Higher-order Linear Attention

In this section, we will introduce Higher-order Linear Attention (HLA). We begin with second-order
linear attention as a warm-up, and present its extension to third-order linear attention in Section 7.

Second-order tensor attention mechanism. Second-order tensor attention can be written as

T2 := (QK⊤)(QK⊤)⊤ = Q(K⊤K)Q⊤ ∈ Rn×n,

so that [T2]ij = q⊤
i (K⊤K)qj . The right-hand side shows a dependence on the second moment

K⊤K ∈ Rd×d, suggesting streaming implementations via prefix moments.
We maintain prefix summaries at time t:

SK
t :=

∑
i≤t

kik
⊤
i ∈ Rd×d,

CQV
t :=

∑
i≤t

qiv
⊤
i ∈ Rd×dv ,

mQ
t :=

∑
i≤t

qi ∈ Rd.

All the above prefix summaries can be updated in a streaming fashion. In particular, the updates of
SK
t and CQV

t cost O(d2) and O(d dv) time per token, respectively.

Unnormalized HLA. The output of second-order HLA at time t is the numerator-style bilinear
form built from prefix moments:

ot := q⊤
t S

K
t CQV

t . (3.1)

This choice avoids length-dependent renormalization while preserving streaming updates and the
same state as the normalized variant.
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Normalized HLA. In order to define the normalized output of HLA, we define the numerator and
denominator at t as follows:

numt = q⊤
t S

K
t CQV

t , dent = q⊤
t S

K
t mQ

t ,

and the normalized output of HLA is given by

ot =
numt

dent + ε
=

q⊤
t S

K
t CQV

t

q⊤
t S

K
t mQ

t + ε
, (3.2)

where ε > 0 is a small constant added for numerical stability.
Notably, SK

t acts as a learned, data-dependent metric on query space; CQV
t is a value accumulator

modulated by past queries; and mQ
t provides a query mass for optional scale control. This mirrors a

second-order polynomial kernel in (q,k) while remaining strictly streaming and causal once masked
(Section 3.1).

Connection with linear attention. Setting SK
t = I yields

numt = q⊤
t C

QV
t =

∑
i≤t

(q⊤
t qi)v

⊤
i , dent = q⊤

t m
Q
t =

∑
i≤t

q⊤
t qi,

So the normalized output reduces to a linear-attention form with kernel K(qt,qi) = q⊤
t qi. When

queries and keys are tied (qi ≡ ki), this coincides with linear attention using the identity feature
map ϕ(x) = x. In general, second-order HLA implements the data-adaptive degree-2 polynomial
kernel Kt(q,q

′) = q⊤SK
t q′ whose metric SK

t =
∑

i≤t kik
⊤
i depends on the past keys, strictly

enriching first-order linearizations while retaining streaming. Absent tying q ≡ k, this differs from
identity-feature linear attention.

3.1 Causal masking via extended summaries

Let L denote the binary causal mask (lower-triangular, including the diagonal). For the masked
second-order matrix,[

(L⊙QK⊤)(L⊙QK⊤)⊤
]
t,j

=
∑

i≤min(t,j)

(q⊤
t ki)(q

⊤
j ki) = q⊤

t S
K
min(t,j)qj .

Equivalently, the strictly causal second-order output at time t can be written in matrix form by
masking on the right before applying values:

ot =
([

(L⊙QK⊤)(L⊙QK⊤)⊤
]
⊙ L

)
t,:
V.

This row-wise ⊙L enforces the restriction j ≤ t when multiplying by V.
Define two additional prefix summaries

Gt :=
∑
i≤t

(
kik

⊤
i

)
CQV

i−1 ∈ Rd×dv ,

ht :=
∑
i≤t

(
kik

⊤
i

)
mQ

i−1 ∈ Rd.

We have the following theorem, which gives the unnormalized and normalized outputs of HLA with
a causal mask.
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Theorem 3.1 (Masked streaming identity for second order). For each t, let

nummask
t = q⊤

t

(
SK
t CQV

t −Gt

)
, denmask

t = q⊤
t

(
SK
t mQ

t − ht

)
.

Consequently, the strictly causal, masked default unnormalized output is

ot = q⊤
t

(
SK
t CQV

t −Gt

)
. (3.3)

An optional linear normalization divides by the masked denominator,

ot =
q⊤
t

(
SK
t CQV

t −Gt

)
q⊤
t

(
SK
t mQ

t − ht

)
+ ε

, (3.4)

where ε > 0 is a small constant added for numerical stability.

Proof. Let W = L⊙ (QK⊤) with L lower-triangular including the diagonal. For the second-order
weight matrix, we have WW⊤ with entries (WW⊤)t,j =

∑
i≤min(t,j)(q

⊤
t ki)(q

⊤
j ki). Then the

masked, unnormalized numerator at time t is

nummask
t =

∑
j≤t

(WW⊤)t,j v
⊤
j =

∑
j≤t

(∑
i≤j

q⊤
t ki k

⊤
i qj

)
v⊤
j = q⊤

t

∑
j≤t

(∑
i≤j

kik
⊤
i

)
qjv

⊤
j ,

where the second equality uses the fact that min(t, j) = j when j ≤ t. Interchanging finite sums
yields ∑

j≤t

(∑
i≤j

kik
⊤
i

)
qjv

⊤
j =

∑
j≤t

SK
j qjv

⊤
j =

∑
j≤t

SK
t qjv

⊤
j︸ ︷︷ ︸

I1

−
∑
j≤t

( ∑
j<i≤t

kik
⊤
i

)
qjv

⊤
j︸ ︷︷ ︸

I2

, (3.5)

where the last equality holds due to SK
j = SK

t −
∑

j<i≤t kik
⊤
i .

In Eq. (3.5), the first term I1 equals SK
t CQV

t . For the second term I2, swap the order of

summation:
∑

j≤t

∑
i>j(·) =

∑
i≤t

∑
j<i(·), we can obtain I2 =

∑
i≤t

(
kik

⊤
i

)(∑
j<i qjv

⊤
j

)
= Gt.

This proves the numerator identity. The proof for the denominator is analogous with vj replaced by

1 (i.e., qj replaced by 1-summaries), yielding SK
t mQ

t − ht. Finally, the division by denmask
t + ε gives

Eq. (3.4).

Online updates. Using the fact that (kk⊤)X = k(k⊤X), we have

SK
t = SK

t−1 + ktk
⊤
t , CQV

t = CQV
t−1 + qtv

⊤
t , mQ

t = mQ
t−1 + qt,

Gt = Gt−1 + kt(k
⊤
t C

QV
t−1), ht = ht−1 + kt(k

⊤
t m

Q
t−1).

Therefore, the per-token cost remains O(d2+d dv) in total.

4 Chunk-parallel training via associative scans

In Section 3.1, we have presented the recurrent form for second-order HLA. As we know, training
a purely recurrent model is inefficient on GPUs. We adopt within-chunk scans with width w and
inter-chunk scans across B chunks (Blelloch, 1990). A similar technique has been widely used in the
literature of linear attention (Yang et al., 2023; Qin et al., 2024). We write Bc for the number of
chunks to avoid overloading B elsewhere; thus, inter-chunk scans are across Bc chunks.
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4.1 Unmasked monoid

Let S = (S,C,m) with token “deltas” ∆St = ktk
⊤
t , ∆Ct = qtv

⊤
t , ∆mt = qt. Define elementary

segments Tt = (∆St,∆Ct,∆mt) and the additive monoid

(SA,CA,mA)⊕ (SB,CB,mB) = (SA+SB, CA+CB, mA+mB).

An exclusive Blelloch scan on {T1, . . . , Tw} yields per-token prefixes Pt =
⊕

i<t Ti, from which the
inclusive state at t is obtained locally by adding Tt. Here and below, A then B denotes adjacent
segments in time (all indices in A precede those in B).

4.2 Masked semidirect product

For the masked case use S = (S,C,m,G,h). For a single-token segment, G = h = 0. Concatenation
is

(SA,CA,mA,GA,hA)⊕ (SB,CB,mB,GB,hB) =(
SA+SB, CA+CB, mA+mB, GA+GB + SBCA, hA+hB + SBmA

)
,

(4.1)

which is associative (direct expansion). Perform the same exclusive scan; per-token inclusive states
follow by adding the local deltas and the cross-terms ∆StCt−1 and ∆Stmt−1.

Decay-aware monoid. Let γ ∈ (0, 1) be a fixed exponential decay and let a segment X carry its
length ℓ(X ) and attenuation ρ(X ) := γℓ(X ). For the unmasked triple S = (S,C,m) the decayed
concatenation is

(SA,CA,mA, ρA)⊕γ (SB,CB,mB, ρB) =
(
ρBSA+SB, ρBCA+CB, ρBmA+mB, ρAρB

)
,

and analogously for the masked (S,C,m,G,h) state:

(SA,CA,mA,GA,hA, ρA)⊕γ (SB,CB,mB,GB,hB, ρB) =(
ρBSA+SB, ρBCA+CB, ρBmA+mB,

ρBGA+GB + SB(ρBCA), ρBhA+hB + SB(ρBmA), ρAρB

)
.

Associativity follows from bilinearity and ρ-multiplicativity.

Theorem 4.1 (Scan equivalence: serial vs. (decayed) associative scans). Consider a sequence of
token segments {T1, . . . , Tn} and either ⊕ (no decay) or ⊕γ (with decay). Let Pt be the exclusive
prefix obtained by a Blelloch scan under the chosen operator. For each t, the inclusive state
computed locally from Pt and Tt equals the state produced by a serial left-to-right recurrence on
tokens 1:t. Consequently, the per-token masked outputs are identical to those of the serial algorithm.

Proof. We prove for the masked, decayed case; the other cases are specializations. Define the
serial recurrence Xt = Φγ(Xt−1, Tt) given by the online updates in Section 3.1 with decay γ. By
construction, Φγ coincides with the binary map fγ(X ,Y) := X ⊕γ Y when Y is a single-token
segment. Because ⊕γ is associative with identity the zero-length segment E (all-zero summaries,
ρ = 1), the Blelloch scan yields Pt = E ⊕γ T1 ⊕γ · · · ⊕γ Tt−1. The local inclusive update computes
Pt⊕γ Tt, which equals Xt by associativity and the definition of Φγ . The masked outputs are functions
only of the inclusive state (Theorem 3.1), hence coincide with the serial outputs.
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Backward for gradients. Let ⊕∗ denote the vector-Jacobian adjoint of ⊕ evaluated at the forward
states. A reverse (decayed) scan applying ⊕∗

γ with checkpointing at tile boundaries yields gradients
that match those of the serial recurrence, by Theorem 4.1 and the chain rule.

Remark 4.2 (Inclusive vs. exclusive scans). Given segments (T1, . . . , Tw) and an associative operator
⊕ with identity E , the exclusive scan returns prefixes Pt = E ⊕ T1 ⊕ · · · ⊕ Tt−1, while the inclusive
scan returns It = Pt ⊕ Tt. Our forward algorithms compute Pt via an exclusive Blelloch scan
and then form the inclusive state locally by combining Pt with the token’s deltas (and required
cross-terms). This choice exposes maximal parallelism and ensures exact equality to the serial
recurrence by Theorem 4.1. With decay, the identity is the zero-length segment (0, . . . ,0, ρ=1); the
exclusive/inclusive distinction is unchanged.

Intra-chunk parallelism. Within a chunk of width w, an exclusive Blelloch scan over {T1, . . . , Tw}
under ⊕ (or ⊕γ) yields Pt for all t in O(logw) span and O(1) auxiliary memory per position. The
per-token inclusive states are then computed independently as It = Pt ⊕ Tt.

Inter-chunk parallelism. For Bc chunks, each chunk c produces a single summary S(c) =⊕
t∈chunk c Tt. An exclusive scan across the Bc summaries gives carry-in prefixes P̂(c) for every

chunk. Each position t in chunk c then uses the merged prefix P̂(c)⊕Pt before adding its local Tt to
obtain the inclusive state. This is the same parallel skeleton widely used in modern linear-attention
and recurrent networks that maintain streaming sufficient statistics (Sun et al., 2023; Qin et al.,
2023; Yang et al., 2023; Qin et al., 2024; Yang et al., 2024b).

Connection to linear attention. First-order linear attentions and related modern RNN kernels
scan additive/decayed summaries (e.g.,

∑
ϕ(k)v⊤ and denominators) using exactly this intra-/inter-

chunk pattern. HLA plugs into the same infrastructure: only the state tuple and cross-terms change
(e.g., (S,C,m,G,h) for second order), while the exclusive/inclusive logic and two-level scan strategy
remain identical. Thus, HLA inherits the throughput characteristics of these systems with strictly
higher expressivity.

4.3 Adding decay and regularization

Decayed states. Introduce a time decay γ ∈ (0, 1):

SK
t = γSK

t−1 + ktk
⊤
t , CQV

t = γCQV
t−1 + qtv

⊤
t , mQ

t = γmQ
t−1 + qt,

and the cross-summaries obey

Gt = γGt−1 + kt

(
k⊤
t C

QV
t−1

)
, ht = γht−1 + kt

(
k⊤
t m

Q
t−1

)
,

which are the decayed analogues of the online updates in Section 3.1. Decay controls spectral
growth and improves recency bias while maintaining associativity (with respect to segment-local
normalization) (Sun et al., 2023; Qin et al., 2023; Yang et al., 2023, 2024a; Peng et al., 2024; Behrouz
et al., 2024; Peng et al., 2025; Behrouz et al., 2025a,b).

5 Implementation details and complexity

In this section, we discuss the implementation details and provide a complexity analysis.
Recall that for each token and each head (second order), we have
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• State: SK
t ∈ Rd×d, CQV

t ∈ Rd×dv , mQ
t ∈ Rd (and masked Gt ∈ Rd×dv , ht ∈ Rd).

• Compute: evaluate ut = q⊤
t S

K
t (mat–vec) and then utC

QV
t (row–matrix), with masked

corrections −q⊤
t Gt; the denominator uses utm

Q
t − q⊤

t ht. This avoids forming SK
t CQV

t

explicitly; masked cross-terms still use k⊤
t X to avoid cubic cost.

• Parallelism: within-chunk Blelloch scans (span O(logw)) and inter-chunk exclusive scans
across Bc chunks, both using the same ⊕.

Algorithm 1 Masked (Second Order) HLA with Within-Chunk Scan

Require: Chunk tokens (q[1:w],k[1:w],v[1:w]), ε, optional ridge λ, optional decay γ, optional flag normalize

1: Token segments: for t = 1..w, set ∆St ← ktk
⊤
t , ∆Ct ← qtv

⊤
t , ∆mt ← qt, and initialize Gt=0, ht=0.

2: Exclusive scan over {(∆St,∆Ct,∆mt,0,0)}wt=1 using ⊕ in Eq. (4.1) (with decay if used) to obtain
prefixes Pt = (St−1,Ct−1,mt−1,Gt−1,ht−1).

3: for t = 1 to w in parallel do
4: Inclusive state:
5: St ← γSt−1 + ∆St; Ct ← γCt−1 + ∆Ct; mt ← γmt−1 + ∆mt

6: Gt ← γGt−1 + ∆St Ct−1; ht ← γht−1 + ∆St mt−1

7: Effective S: Seff
t ← St + λI ▷ optional ridge for stability

8: Default masked unnormalized output:
9: u← q⊤

t S
eff
t ▷ O(d2) matvec

10: num← uCt − q⊤
t Gt ▷ O(d dv)

11: ohla
t ← num

12: Optional normalization:
13: if normalize then
14: den← umt − q⊤

t ht + ε
15: ohla

t ← ohla
t /den

16: end if
17: end for
18: return {ohla

t }wt=1

5.1 Pseudocode

We present a PyTorch-like reference for masked second-order HLA with a within-chunk exclusive
scan. Unmasked and/or diagonal-regularized variants follow by removing (G,h). Normalization is
optional; by default, the implementation returns the unnormalized output and may divide by the
masked denominator if requested.
Remark. Adding λI yields a stabilized causal variant of the masked operator; it does not correspond
to the exact masked bilinear form of (L⊙QK⊤).

5.2 Implementation considerations

HLA only replaces the standard attention sublayer in the transformer block, while the feed-forward
sublayer and normalization sublayers remain unchanged. Drop-in replacement requires only swapping
the kernel while keeping positional encodings and masking identical to the baseline. Multi-query
keys/values (sharing K,V across heads) reduce state from O(h d2) to O(d2+h d dv) while preserving
the algebra.
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The summaries (S,C,m,G,h) are per head. With multi-query (K,V shared across heads),
the key moment SK

t is shared and stored once per layer (O(d2)), while (CQV
t ,mQ

t ,Gt,ht) remain
per-head (O(h d dv+h d)). This yields a total memory of O(d2+h d dv) instead of O(h d2+h d dv)
when each head maintains its own SK

t .
For throughput, maintain SK

t in a packed symmetric layout (store only the upper triangle,
1
2d(d+1) entries) to reduce bandwidth without changing the algebra. Within a chunk of width w,
use an exclusive Blelloch scan to obtain prefixes in O(logw) span and constant extra memory per
position; inter-chunk scans use the same operator across Bc chunks.

6 Asymmetric Higher-order Linear Attention

Motivation. The second-order HLA in Section 3 realizes the symmetric triple product AA⊤V
with A = QK⊤ (masked later). We introduce a complementary asymmetric variant that uses the
left-cascaded product

AAV︸ ︷︷ ︸
AAV

= Q (K⊤Q) (K⊤V),

and show it admits strictly causal streaming with O(d2+d dv) per-token cost. We call this operator
AHLA (Asymmetric Higher-order Linear Attention).

6.1 Definition and masked streaming identity

Let A = L⊙ (QK⊤) be the causally masked affinity, where L is the binary lower-triangular mask
(including the diagonal). The AAV weights are

(AA)t,j =

t∑
i=j

(q⊤
t ki) (q⊤

i kj), j ≤ t.

To obtain strictly causal outputs when applying to values, interpret the final multiplication as(
(AA)⊙ L

)
V; the streaming identity in Theorem 6.1 implements exactly this row-wise masking.

Consequently, the (unnormalized) output is

oAHLA
t =

∑
j≤t

t∑
i=j

(q⊤
t ki)(q

⊤
i kj)v

⊤
j . (6.1)

Introduce the streaming prefix summaries

PKV
t :=

∑
j≤t

kjv
⊤
j ∈ Rd×dv , mK

t :=
∑
j≤t

kj ∈ Rd,

Et :=
∑
i≤t

ki

(
q⊤
i P

KV
i

)
∈ Rd×dv ,

nt :=
∑
i≤t

ki

(
q⊤
i m

K
i

)
∈ Rd.

Note. For chunk-parallel scans used in training, we additionally introduce a segment-level cross
moment RKQ; see Section 6.2 for its definition and role in the concatenation operator.
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Theorem 6.1 (Masked streaming identity for AHLA). With the above definitions,

oAHLA
t = q⊤

t Et and ôAHLA
t =

q⊤
t Et

q⊤
t nt + ε

,

where the second expression is an optional linear normalization using the masked denominator. The
online (strictly causal) updates are

PKV
t = PKV

t−1 + ktv
⊤
t , mK

t = mK
t−1 + kt,

Et = Et−1 + kt

(
q⊤
t P

KV
t

)
, nt = nt−1 + kt

(
q⊤
t m

K
t

)
.

Proof. From Eq. (6.1), fix i and sum over j ≤ i:
∑

j≤i(q
⊤
i kj)v

⊤
j = q⊤

i P
KV
i . Then oAHLA

t =∑
i≤t(q

⊤
t ki)

(
q⊤
i P

KV
i

)
= q⊤

t

(∑
i≤t ki(q

⊤
i P

KV
i )

)
= q⊤

t Et. Replacing vj by 1 gives the denominator

with mK
i , hence nt. The stated updates follow by isolating index i=t and using that PKV

t =
PKV

t−1 + ktv
⊤
t and mK

t = mK
t−1 + kt.

Cost. For streaming/serial inference, the dominant work is forming q⊤
t P

KV
t ∈ R1×dv and the

outer product kt(·); the total is O(d dv) time and O(d dv+d) state per head (for P,E,m,n). For
chunk-parallel scans used in training, an additional block statistic RKQ appears only inside the
concatenation operator (Section 6.2), contributing O(d2) memory per chunk summary but not to
the streaming path.

Decay mechanism. With exponential decay γ ∈ (0, 1),

PKV
t = γPKV

t−1 + ktv
⊤
t , mK

t = γmK
t−1 + kt,

Et = γEt−1 + kt

(
q⊤
t P

KV
t

)
, nt = γnt−1 + kt

(
q⊤
t m

K
t

)
,

which preserves associativity of the scan operator below.

6.2 Chunk-parallel scans for AHLA

Unmasked/masked concatenation. For segment A followed by B, consider the augmented state

S = (RKQ,PKV ,mK ,E,n).

Here RKQ is the segment-level key–query cross moment, defined by

RKQ :=
∑

i∈segment

kiq
⊤
i ∈ Rd×d.

It is used only during chunk concatenation to form the cross terms RBPA and RBmA in Eq. (6.2);
It is not required by the serial/streaming forward path in Algorithm 2. With exponential decay, the
segment’s RKQ attenuates as ρBRA+RB in the decayed concatenation.

The undecayed associative concatenation is

(RA,PA,mA,EA,nA)⊕AHLA (RB,PB,mB,EB,nB) =(
RA+RB, PA+PB, mA+mB, EA+EB+RBPA, nA+nB+RBmA

)
, (6.2)

which is associative by direct expansion of
∑

i∈A∪B ki(q
⊤
i P≤i) and the observation that for i ∈ B

the missing cross-prefix equals RBPA (and analogously for n).

10



Decay-aware concatenation. Let each segment carry its attenuation ρ(·) = γℓ(·). Then

(R,P,m,E,n, ρ) = (ρBRA+RB, ρBPA+PB, ρBmA+mB,

ρBEA+EB+RB(ρBPA), ρBnA+nB+RB(ρBmA), ρAρB),

which is associative by bilinearity and multiplicativity of ρ.

Scan equivalence. An exclusive Blelloch scan under ⊕AHLA (or its decayed form) followed by
local inclusion reproduces exactly the activations of the serial recurrence given above.

6.3 Pseudocode

Algorithm 2 AHLA (Second-order) streaming with causal mask and optional decay

Require: {qt,kt,vt}nt=1, decay γ ∈ (0, 1], stability ε > 0, flag normalize

1: Init: P=0d×dv , m=0d, E=0d×dv , n=0d

2: for t = 1 to n do
3: P← γP + ktv

⊤
t ; m← γm + kt

4: r ← q⊤
t P ▷ 1×dv

5: s← q⊤
t m ▷ scalar

6: E← γE + kt r; n← γn + skt

7: ot ← q⊤
t E

8: if normalize then
9: den← q⊤

t n + ε; ot ← ot/den
10: end if
11: end for
12: return {ot}nt=1

Relation to AA⊤V. AHLA emphasizes a matrix power of A, weighting each value vj through
a single pass q⊤

i kj routed by an intermediate key index i. In contrast, the symmetric AA⊤V
aggregates via the metric SK and query summaries. Both are second-order, strictly causal, and
stream with identical asymptotic costs but induce different inductive biases.

7 Third-Order Linear Attention

In this section, we will introduce third-order HLA.

7.1 Steaming form of Causal HLA

Third-order tensor attention mechanism. Let A = QK⊤ ∈ Rn×n and L be the binary causal
mask. Unmasked third-order tensor attention uses the matrix AA⊤A. Its (t, j)-entry is

[(AA⊤A)]t,j =
∑
u≤n

∑
i≤n

(q⊤
t ki)(q

⊤
u ki)

 (q⊤
u kj) = q⊤

t (K⊤K)

(∑
u

quq
⊤
u

)
kj ,

which immediately yields a streaming factorization through prefix moments.

11



Unmasked factorization. Define prefix summaries SK
t =

∑
i≤t kik

⊤
i ∈ Rd×d, SQ

t =
∑

i≤t qiq
⊤
i ∈

Rd×d, PKV
t =

∑
i≤t kiv

⊤
i ∈ Rd×dv , mK

t =
∑

i≤t ki ∈ Rd. The default (unnormalized) third-order
operator is

o
(3)
t = q⊤

t S
K
t SQ

t P
KV
t .

An optional normalization divides by q⊤
t S

K
t SQ

t m
K
t +ε if desired.

Masked streaming summaries. To impose strict causality, we introduce cross-summaries:

G
(1)
t :=

∑
i≤t

(kik
⊤
i )SQ

i−1P
KV
i−1 ∈ Rd×dv , h

(1)
t :=

∑
i≤t

(kik
⊤
i )SQ

i−1m
K
i−1 ∈ Rd,

G
(2)
t :=

∑
i≤t

SK
i−1(qiq

⊤
i )PKV

i−1 ∈ Rd×dv , h
(2)
t :=

∑
i≤t

SK
i−1(qiq

⊤
i )mK

i−1 ∈ Rd,

G
(3)
t :=

∑
i≤t

SK
i−1S

Q
i−1(kiv

⊤
i ) ∈ Rd×dv , h

(3)
t :=

∑
i≤t

SK
i−1S

Q
i−1ki ∈ Rd.

Then the masked, unnormalized quantities are defined as follows:

num
(3)mask
t = q⊤

t

(
SK
t SQ

t P
KV
t −G

(1)
t −G

(2)
t −G

(3)
t

)
,

den
(3)mask
t = q⊤

t

(
SK
t SQ

t m
K
t − h

(1)
t − h

(2)
t − h

(3)
t

)
.

The following theorem shows that the (normalized) output of third-order HLA can be computed

based on num
(3)mask
t and den

(3)mask
t .

Theorem 7.1 (Masked streaming identity for third order). For each t, the strictly causal third-order
output in the default (unnormalized) form is

o
(3)
t = num

(3)mask
t .

An optional normalized variant divides by the masked denominator,

o
(3)
t =

num
(3)mask
t

den
(3)mask
t + ε

.

and the online updates are

SK
t = SK

t−1 + ktk
⊤
t , SQ

t = SQ
t−1 + qtq

⊤
t ,

PKV
t = PKV

t−1 + ktv
⊤
t , mK

t = mK
t−1 + kt. (7.1)

G
(1)
t = G

(1)
t−1 + (ktk

⊤
t )SQ

t−1P
KV
t−1 ,

G
(2)
t = G

(2)
t−1 + SK

t−1(qtq
⊤
t )PKV

t−1 ,

G
(3)
t = G

(3)
t−1 + SK

t−1S
Q
t−1(ktv

⊤
t ). (7.2)

h
(1)
t = h

(1)
t−1 + (ktk

⊤
t )SQ

t−1m
K
t−1,

h
(2)
t = h

(2)
t−1 + SK

t−1(qtq
⊤
t )mK

t−1,

h
(3)
t = h

(3)
t−1 + SK

t−1S
Q
t−1kt. (7.3)
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Proof. Let W = L⊙ (QK⊤) and consider (WW⊤W)V. The t-th row applied to V is

∑
j≤t

∑
u≤t

(WW⊤)t,uWu,j

v⊤
j = q⊤

t

∑
j≤t

∑
u≤t

SK
u quq

⊤
u

kjv
⊤
j .

Using
∑

u≤t S
K
u = SK

t +
∑

u≤t−1(S
K
u ) and repeatedly applying

∑
i≤u =

∑
i≤t−

∑
u<i≤t to peel off

the dependence on future indices relative to each summation boundary yields∑
j≤t

SK
t SQ

t kjv
⊤
j −

∑
i≤t

(kik
⊤
i )SQ

i−1P
KV
i−1 −

∑
i≤t

SK
i−1(qiq

⊤
i )PKV

i−1 −
∑
i≤t

SK
i−1S

Q
i−1(kiv

⊤
i ),

which is precisely SK
t SQ

t P
KV
t −G

(1)
t −G

(2)
t −G

(3)
t . Left-multiplication by q⊤

t gives the masked
numerator, and replacing vj by 1 yields the denominator. Online updates follow by isolating the
i = t contributions and using (kk⊤)X = k(k⊤X).

7.2 Pseudocode

We present explicit pseudocode for masked third-order HLA in two parts: (i) a strictly causal
streaming kernel for inference, and (ii) the associative scan operator used for chunk-parallel training.
All operations are per head; shapes follow Section 7.1.

Algorithm 3 Masked (Third Order) HLA Streaming Kernel

Require: Sequences {qt,kt,vt}nt=1, decay γ ∈ (0, 1], stability ε > 0, flag normalize

1: Init: SK =0d×d, SQ =0d×d, PKV =0d×dv
, mK =0d

2: G(1)=0d×dv
, G(2)=0d×dv

, G(3)=0d×dv
, h(1)=0d, h(2)=0d, h(3)=0d

3: for t = 1 to n do
4: SK

prev←SK ; SQ
prev←SQ; Pprev←PKV ; mprev←mK

5: Inclusive first-order updates (with decay):
6: SK ← γSK

prev + ktk
⊤
t ; SQ ← γSQ

prev + qtq
⊤
t

7: PKV ← γPprev + ktv
⊤
t ; mK ← γmprev + kt

8: Cross-summaries (matvec/outer-product forms):
9: u1 ← SQ

prev kt; G(1) ← γG(1) + kt

(
u⊤
1 Pprev

)
; h(1) ← γh(1) + kt

(
u⊤
1 mprev

)
10: a2 ← SK

prev qt; G(2) ← γG(2) + a2
(
q⊤
t Pprev

)
; h(2) ← γh(2) + a2

(
q⊤
t mprev

)
11: u3 ← SQ

prev kt; a3 ← SK
prev u3; G(3) ← γG(3) + a3v

⊤
t ; h(3) ← γh(3) + a3

12: Output (unnormalized by default):
13: y ← SK qt; z ← SQ y; termA← z⊤PKV ; termB← q⊤

t G
(1); termC← q⊤

t G
(2); termD← q⊤

t G
(3)

14: ot ← termA− termB− termC− termD
15: if normalize then
16: denvec← SK (SQmK)− h(1) − h(2) − h(3)

17: den← q⊤
t denvec + ε; ot ← ot/den

18: end if
19: end for
20: return {ot}nt=1

Usage. We provide the strictly causal streaming kernel in Algorithm 3. Designing a chunk-parallel
scan operator that exactly reproduces serial activations requires additional segment-level summaries
beyond (SK ,SQ,PKV ,mK ,G(1:3),h(1:3)); we leave this composition to future work.
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8 Related Work

The literature on subquadratic sequence modeling spans (i) fast-weight style dynamic-parameter
models, (ii) kernel/feature-map linearizations of attention, and (iii) recurrent/state-space approaches.
HLA belongs to a complementary class: it preserves attention-style, data-dependent mixing but
realizes higher interactions through compact prefix moments with exact causal masking and scan-
parallel training.
Fast weights and fast weight programmers (FWPs). Fast weights, dating to early connectionist
memory models (Hinton and Plaut, 1987), implement short-term, input-dependent synaptic changes.
Schmidhuber’s fast weight programmers (Schmidhuber, 1992) introduced differentiable controllers
that program a separate fast-weight matrix; later, Ba et al. (2016) revived this idea to attend to the
recent past. A series of works made the connection to modern attention explicit: Schlag et al. (2021)
showed a formal equivalence between linearized self-attention and FWPs, where outer-product
updates ∆Wt ∝ ktv

⊤
t accumulate an associative memory queried by qt; Irie et al. (2021) extended

FWPs with recurrence in the programmer and the fast net. Yang et al. (2024b) utilizes WY
Transformations (Bischof and Van Loan, 1987) to implement chunkwise parallel training of Delta
Network (Schlag et al., 2021). Parallel lines explore higher or preconditioned mixing by maintaining
or inverting second-moment matrices. In our formulation, SK

t plays the role of a learned kernel;
working directly with SK

t avoids explicit matrix inversion and preserves streaming updates, whereas
inverse-based methods typically require heavier linear algebra (Behrouz et al., 2025a,b; von Oswald
et al., 2025).
Linear Attention Mechanisms. A common route is to replace the softmax kernel by explicit
features ϕ to enable streaming via running sums. Representative examples include Linear Trans-
formers (Katharopoulos et al., 2020), Performer’s FAVOR+ random features (Choromanski et al.,
2020), and Random Feature Attention (Peng et al., 2021). Earlier work also proposed multiplicative
rearrangements that yield linear-complexity-efficient attention (Shen et al., 2021). These meth-
ods achieve O(ndr) time with r feature dimension but are typically first-order in the sense that
they maintain only

∑
ϕ(k)v⊤ and (optionally) a scalar denominator. By contrast, second-order

HLA maintains the full key moment SK
t =

∑
i≤t kik

⊤
i together with query-value and query mass

summaries and their masked cross-summaries, yielding strictly causal higher interactions while
remaining streaming. Recent linear attention variants include Sun et al. (2023); Qin et al. (2023);
Yang et al. (2023); Qin et al. (2024); Yang et al. (2024b); von Oswald et al. (2025).
State Space Models. SSMs (e.g., S4) (Gu et al., 2021) and selective SSMs (e.g., Mamba) (Gu
and Dao, 2023; Dao and Gu, 2024) realize O(1) per-token state updates via linear recurrences and
convolutions. These architectures excel at long-range dependencies but express data-dependent
mixing differently from attention. HLA sits in between: it is attention-like (data-dependent
queries/keys) yet streams via compact prefix statistics like recurrent models.
Modern RNNs. Recent modern RNN designs emphasize gating, decays, and associative scan–friendly
recurrences that enable parallel training while preserving strictly constant per-token state at inference.
Examples include gated linear mixers and decay-aware updates (Yang et al., 2023, 2024a), efficient
gradient routing and training strategies for long sequences (Qin et al., 2024; Peng et al., 2024;
Sun et al., 2024), and RWKV-style architectures that replace attention with learned decays and
elementwise gating (Peng et al., 2025). These methods typically maintain first-order sufficient
statistics and rely on fixed linear dynamics. In contrast, HLA retains attention-style, data-dependent
metrics via SK

t and higher cross-summaries while keeping the same O(1) per-token state update
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paradigm, offering a complementary inductive bias to RNNs and SSMs.
Test Time Training and Memory Networks. Test-time adaptation and explicit long-term memory
are emerging tools for extending context without quadratic cost. Test-time training variants adapt
parameters from recent tokens to improve local coherence (Sun et al., 2024), whereas memory
networks maintain external stores addressable by content keys (Behrouz et al., 2024, 2025a,b). The
HLA view is orthogonal: it encodes higher interactions in compact prefix moments that are sufficient
for exact masked streaming and scan-parallel training.
Associative memory and Hopfield views. Modern Hopfield networks show that transformer
attention is a single-step retrieval in an energy-based associative memory (Ramsauer et al., 2020;
Zhong et al., 2025). While this perspective clarifies why attention uses content-addressable memory,
standard Hopfield-style layers remain first-order in their sufficient statistics. HLA complements this
view by providing explicit higher sufficient statistics with strict causality.

9 Conclusion

We introduced Higher-order Linear Attention (HLA), a causal higher attention mechanism with exact
streaming updates, a strictly causal masked formulation via extended summaries, and associative
scans for parallel training that provably match serial recurrences. At second order, HLA maintains
O(d2) state per head and computes each token in O(d2) time, with optional normalization and
decay that preserve associativity. We further developed an asymmetric variant (AHLA) and a
complete third-order masked algebra with streaming formulas and scan operators.
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